Farklı Uygulama ve Tasarımların Bir Gaz Yakıcıdaki Emisyonların Düşürülmesine Etkileri

Verimsiz enerji kullanımı, kaynakların hızla tükenmesinin ve aynı zamanda tam yanmanın gerçekleşmediğine işaret edebilecek, yüksek orandaki emisyonlara bağlı küresel ısınmanın ana nedenlerinden biridir. Genel olarak, toplu sistemler ya da büyük ölçekli sistemler yukarda belirtilen problemlerin en büyük pay sahibidirler. Endüstriyel yakıcılar metal şekillendirme sanayisinde ve büyük ölçekli elektrik üretim süreçlerinde yaygın bir şekilde kullanılmaktadır. Bu alanlarda, hem karbon hem de azot bazlı emisyonlar için katı kurallar vardır. Buradan yola çıkarak, bu çalışma, çevresel kirleticilerin minimize edilmesi için oksi-yakıt yanması, yanmış gazların iç devridaimi ya da ön karışımlama gibi konsept ve tasarımları içeren farklı teknikler kullanarak, yanma verimi ve emisyon düşüşü açısından iyileştirme sağlamayı amaçlamaktadır. Bütün sonuçlar birbiriyle karşılaştırılmış ve birçok parametreyi içeren tablolar ile sıcaklık konturları şeklinde verilmiştir. Bazı konseptlerin diğerlerinden performans ve emisyonlar açısından daha etkin olduğu gösterilmiştir.

Effects of Different Applications and Designs on Emission Reduction in a Gas Burner

Inefficient energy usage is one of the main reasons of depletion of resources at a faster rate and global warming due to the higher-level emissions, which may be also an indicator of incomplete combustion. Bulk systems or large-scale systems generally are the biggest contributors to the problems stated above. Industrial burners are widely used in metal forming industry and the process of large-scale production of electricity. There are strict rules for both carbon and nitrogen based emissions in these sectors. Therefore, this study aims to provide an enhancement in combustion efficiency and reduction in emissions using different techniques for minimization of environmentally hazardous pollutants, which includes concepts and designs such as oxy-fuel combustion, internal flue gas recirculation (IFGR) or premixing. All the results has been compared with each other and they have given in the form of tables of various outputs and temperature contours. It has been shown that some of the concepts have greater effect than the other ones in terms of performance and emissions.

___

  • BACHMAIER, F., EBERIUS, K. H., & JUST, T. (1973). The Formation of Nitric Oxide and the Detection of HCN in Premixed Hydrocarbon-Air Flames at 1 Atmosphere. Combustion Science and Technology, 7(2), 77–84. https://doi.org/10.1080/00102207308952345
  • Bell, J. B., Day, M. S., & Lijewski, M. J. (2013). Simulation of nitrogen emissions in a premixed hydrogen flame stabilized on a low swirl burner. Proceedings of the Combustion Institute, 34(1), 1173–1182. https://doi.org/10.1016/J.PROCI.2012.07.046
  • Cappelletti, A., & Martelli, F. (2017). Investigation of a pure hydrogen fueled gas turbine burner. International Journal of Hydrogen Energy, 42(15), 10513–10523. https://doi.org/10.1016/j.ijhydene.2017.02.104
  • Cellek, M. S., & Pınarbaşı, A. (2018). Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas and hydrogen as fuels. International Journal of Hydrogen Energy, 43(2), 1194–1207. https://doi.org/10.1016/J.IJHYDENE.2017.05.107
  • Correa, S. M., & Smooke, M. D. (1991). Nox in parametrically varied methane flames. Symposium (International) on Combustion, 23(1), 289–295. https://doi.org/10.1016/S0082-0784(06)80272-9
  • Craft, T., Launder, B., Flow, K. S.-I. J. of H. and F., & 1996, undefined. (n.d.). Development and application of a cubic eddy-viscosity model of turbulence. Elsevier. Retrieved from https://www.sciencedirect.com/science/article/pii/0142727X95000796
  • Flagan, R. C., & Seinfeld, J. H. (2012). Fundamentals of air pollution engineering. Dover. Retrieved from https://books.google.com.tr/books?id=dNzCAgAAQBAJ&hl=tr&source=gbs_book_other_versions
  • Hanjalić, K., & Launder, B. (2011). Modelling turbulence in engineering and the environment: second-moment routes to closure. Retrieved from https://www.google.com/books?hl=tr&lr=&id=1cAhAwAAQBAJ&oi=fnd&pg=PR5&dq=Modelling+Turbulence+in+Engineering+and+the+Environment:+Second-Moment+Routes+to+Closure&ots=TeAkxhXYIn&sig=Iuqg_N7QH0lfrlgaX3DWN_rU01w
  • Ilbas, M., Yilmaz, I., Veziroglu, T. N., & Kaplan, Y. (2005). Hydrogen as burner fuel: Modelling of hydrogen-hydrocarbon composite fuel combustion and NOx formation in a small burner. International Journal of Energy Research. https://doi.org/10.1002/er.1104
  • Jr, C. E. B. (2013). The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 2 – Design and Operations (Vol. 2). https://doi.org/10.1201/b12975-4
  • Kakaç, S., Pramuanjaroenkij, A., & Zhou, X. Y. (2007). A review of numerical modeling of solid oxide fuel cells. Int. J. Hydrogen Energy. https://doi.org/DOI 10.1016/j.ijhydene.2006.11.028
  • Lamas, M. I., & Rodriguez, C. G. (2017). Numerical model to analyze Nox reduction by ammonia injection in diesel-hydrogen engines. International Journal of Hydrogen Energy, 42(41), 26132–26141. https://doi.org/10.1016/J.IJHYDENE.2017.08.090
  • Launder, B., Reece, G., mechanics, W. R.-J. of fluid, & 1975, undefined. (n.d.). Progress in the development of a Reynolds-stress turbulence closure. Cambridge.org. Retrieved from https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/progress-in-the-development-of-a-reynoldsstress-turbulence-closure/796DDAC14EF54A84A36100565D3420D5
  • Miller, J. A., & Bowman, C. T. (1989). Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 15(4), 287–338. https://doi.org/10.1016/0360-1285(89)90017-8
  • Physik, J. R.-Z. für, & 1951, undefined. (n.d.). Statistische theorie nichthomogener turbulenz. Springer. Retrieved from https://link.springer.com/article/10.1007/BF01330059
  • Riahi, Z., Bounaouara, H., Hraiech, I., Ali Mergheni, M., Sautet, J.-C., & Ben Nasrallah, S. (2017). Combustion with mixed enrichment of oxygen and hydrogen in lean regime. https://doi.org/10.1016/j.ijhydene.2016.06.232
  • Scheffknecht, G., Al-Makhadmeh, L., Schnell, U., & Maier, J. (2011). Oxy-fuel coal combustion—A review of the current state-of-the-art. International Journal of Greenhouse Gas Control, 5, S16–S35. https://doi.org/10.1016/J.IJGGC.2011.05.020
  • Syred, N., Abdulsada, M., Griffiths, A., O’Doherty, T., & Bowen, P. (2012). The effect of hydrogen containing fuel blends upon flashback in swirl burners. Applied Energy, 89(1), 106–110. https://doi.org/10.1016/j.apenergy.2011.01.057
  • Turns, S. R. (2012). An introduction to combustion : concepts and applications. McGraw-Hill.U.S. Department of Energy (DOE). (2017). Alternative Fuels Data Center. Retrieved April 29, 2018, from https://www.afdc.energy.gov/fuels/fuel_properties.php
  • Yapici, H., Baştürk, G., Kayataş, N., & Albayrak, B. (2006). Effect of oxygen fraction on local entropy generation in a hydrogen-air burner. Heat and Mass Transfer/Waerme- Und Stoffuebertragung. https://doi.org/10.1007/s00231-006-0082-1
  • Yu, B., Kum, S.-M., Lee, C.-E., & Lee, S. (2013). Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation. Energy, 61, 345–353. https://doi.org/10.1016/J.ENERGY.2013.08.057
  • Zevenhoven, R., & Kilpinen, P. (2001). Flue gases and fuel gases. Control of Pollutants in Flue Gases and Fuel Gases. Retrieved from http://users.abo.fi/rzevenho/gases.PDF
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi