Bitki kromozomlarında sentromerlerin önemi, moleküler yapısı ve organizasyonu

Sentromer hücre bölünmesi esnasında mikrotübüller aracılığıyla kromozomların yeni hücrelere eşit dağılımını sağlayan kompleks bir yapıdır. Böylesi bir kompleks yapı, tüm ökaryotlarda olduğu gibi bitki türlerinde de büyük ilgi çekerek farklı çalışma disiplinlerinin temelini oluşturmuştur. Çalışma disiplinlerinden birisi olan bitki sentromer biyolojisi, çeşitli bitki sentromerlerindeki benzerlik ve farklılıkları ortaya koyarak genom biyolojisi, taksonomi, filogeni gibi alanlara temel bilgiler sunmaktadır. Ökaryotlarda kromozomları üzerinde fonksiyonel olarak korunmuş sentromer, yapısal anlamda farklı özellikler gösterebilmektedir. Bu yapısal değişiklikler en yaygın anlamda iki yapısal unsur olan sentromere özgü histon H3 (CENH3) proteini ve sentromerik DNA dizileri bakımından ifade edilmektedir. Sentromer tiplerinin karakteristik yapısal özelliklerinin tanımlanabilmesi için klonlanarak dizilenmesi gerekmektedir. Ancak sentromerik DNA dizilerinde bulunan uzun tekrar DNA elementlerinden dolayı hatalı dizilemeler meydana gelebilmekte ve doğru fiziksel haritalar oluşturulamamaktadır. Bu nedenle bitki sentromer evrimi yeteri kadar çözümlenememiştir. Bitki sentromerini çözümleyebilmek amacıyla sentromer mühendisliği, bitki biyoteknolojisi ve biyoinformatik alanları birbiriyle entegre edilerek yeni analiz yöntemleri geliştirilmiştir. Bu çalışma kapsamında, tarihsel perspektiften yola çıkarak çeşitli model bitkiler ve devamında baklagiller (Fabaceae) özelinde farklı epigenetik özellikteki sentromerik DNA dizileri ve sentromer proteinleri irdelenerek evrensel bitki sentromer yapısının özellikleri ortaya konulacaktır. Ayrıca sentromer mühendisliği aracılığıyla uygulamalı tarım bilimlerinde bitki ıslahına büyük yenilikler katabilecek farklı bilimsel çalışmalar sunulacaktır.

Centromere is a complex structure that ensures equal distribution of chromosomes to new cells via microtubules during cell division. Such a complex structure attracted great attention in plant species as well as in all eukaryotes and formed the basis of various study disciplines. Plant centromere biology, which is one of the study disciplines, provides basic information on genome biology, taxonomy, phylogeny by revealing the similarities and differences in various plant centromeres. In eukaryotes, the centromere, which is functionally conserved on chromosomes, may show various structural features. These structural changes are most commonly expressed in terms of the centromere-specific histone H3 (CENH3) protein and centromeric DNA sequences, which are two structural elements. To define the characteristic structural features of the centromere types, extensive studies must be performed involving cloning and sequencing. However, due to the long repeat DNA elements present in centromeric regions, erroneous sequences may occur and correct physical and genetic maps cannot be created. Therefore, plant centromere evolution has not been sufficiently resolved. To analyze the plant centromeres, new analysis methods have been developed by integrating the fields of centromere engineering, plant biotechnology and bioinformatics. Within the scope of this review, starting from a historical perspective, the centromere DNA sequences and centromere proteins with different epigenetic properties will be examined for various model plants and with special emphasis to legumes (Fabaceae), and the properties of the universal plant centromere structure will be revealed. In addition, different scientific studies will be presented that can add great innovations to plant breeding in applied agricultural sciences through centromere engineering.

___

  • Mellone, B. G. (2009). Structural and temporal regulation of centromeric chromatin. Biochem Cell Biol, 87(1), 255-264. https://doi.org/10.1139/O08-121
  • Santos, A. P., Gaudin, V., Mozgová, I., Pontvianne, F., Schubert, D., Tek, A. L., Dvořáčková, M., Liu, C., Fransz, P., Rosa, S., & Farrona, S. (2020). Tidying-up the plant nuclear space: Domains, functions, and dynamics. J Exp Bot, 71(17), 5160-5178. https://doi.org/10.1093/jxb/eraa282
  • Henikoff, S., Ahmad, K., & Malik, H. S. (2001). The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science, 293(5532), 1098-1102. https://doi.org/10.1126/science.1062939
  • Talbert, P. B., Masuelli, R., Tyagi, A. P., Comai, L., & Henikoff, S. (2002). Centromeric Localization and Adaptive Evolution of an Arabidopsis Histone H3 Variant. The Plant Cell, 14(5), 1053-1066. https://doi.org/10.1105/tpc.010425
  • Fukagawa, T., & Earnshaw, W. C. (2014). The Centromere: Chromatin Foundation for the Kinetochore Machinery. Dev Cell, 30(5), 496-508. https://doi.org/10.1016/j.devcel.2014.08.016
  • Jiang ve Birchler. (2013). Plant Centromere Biology (1. bs). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118525715
  • Robertis, D. (1987). Cell and molecular biology. 8th Edition. https://www.osti.gov/biblio/6157496
  • Bickmore, W. A. (2001). Karyotype Analysis and Chromosome Banding. eLS. https://doi.org/10.1038/npg.els.0001160
  • Rice, S. (1998). Endless Forms: Species and Speciation. Oxford University Press.
  • Schubert, I., & Lysak, M. A. (2011). Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics, 27(6), 207-216. https://doi.org/10.1016/j.tig.2011.03.004
  • Doyle, S. R., Tracey, A., Laing, R., Holroyd, N., Bartley, D., Bazant, W., Beasley, H., Beech, R., Britton, C., Brooks, K., Chaudhry, U., Maitland, K., Martinelli, A., Noonan, J. D., Paulini, M., Quail, M. A., Redman, E., Rodgers, F. H., Sallé, G., Cotton, J. A. (2020). Extensive genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. BioRxiv, https://doi.org/10.1101/2020.02.18.945246
  • Fu, S., Gao, Z., Birchler, J., & Han, F. (2012). Dicentric Chromosome Formation and Epigenetics of Centromere Formation in Plants. Journal of Genetics and Genomics, 39(3), 125-130. https://doi.org/10.1016/j.jgg.2012.01.006
  • Pluta, A. F., Mackay, A. M., Ainsztein, A. M., Goldberg, I. G., & Earnshaw, W. C. (1995). The centromere: Hub of chromosomal activities. Science, 270(5242), 1591-1594. https://doi.org/10.1126/science.270.5242.1591
  • Ekwall, K. (2007). Epigenetic control of centromere behavior. Annu Rev Genet, 41, 63-81. https://doi.org/10.1146/annurev.genet.41.110306.130127
  • Clarke, L. (1990). Centromeres of budding and fission yeasts. Trends Genet, 6(5), 150-154. https://doi.org/10.1016/0168-9525(90)90149-z
  • Stoler, S., Keith, K. C., Curnick, K. E., & Fitzgerald-Hayes, M. (1995). A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev., 9(5), 573-586. https://doi.org/10.1101/gad.9.5.573
  • McGrew, J., Diehl, B., & Fitzgerald-Hayes, M. (1986). Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol, 6(2), 530-538. https://doi.org/10.1128/mcb.6.2.530
  • Wrensch, D. L., Kethley, J. B., & Norton, R. A. (1994). Cytogenetics of Holokinetic Chromosomes and Inverted Meiosis: Keys to the Evolutionary Success of Mites, with Generalizations on Eukaryotes. Springer, 282-343. https://doi.org/10.1007/978-1-4615-2389-5_11
  • Mandrioli, M., & Manicardi, G. C. (2012). Unlocking holocentric chromosomes: New perspectives from comparative and functional genomics? Curr. Genomics, 13(5), 343-349. https://doi.org/10.2174/138920212801619250
  • Voullaire, L., Saffery, R., Earle, E., Irvine, D. V., Slater, H., Dale, S., Sart, D. du, Fleming, T., & Choo, K. H. A. (2001). Mosaic inv dup(8p) marker chromosome with stable neocentromere suggests neocentromerization is a post-zygotic event. American Journal of Medical Genetics, 102(1), 86-94. https://doi.org/10.1002/1096-8628(20010722)102:1<86::AID-AJMG1390>3.0.CO;2-T
  • Nasuda, S., Hudakova, S., Schubert, I., Houben, A., & Endo, T. R. (2005). Stable barley chromosomes without centromeric repeats. Proc. Natl. Acad. Sci. U.S.A., 102(28), 9842-9847. https://doi.org/10.1073/pnas.0504235102
  • Peacock, W. J., Dennis, E. S., Rhoades, M. M., & Pryor, A. J. (1981). Highly repeated DNA sequence limited to knob heterochromatin in maize. PNAS, 78(7), 4490-4494. https://doi.org/10.1073/pnas.78.7.4490
  • Thomas, C. A. (1971). The genetic organization of chromosomes. Annu. Rev. Genet., 5, 237-256. https://doi.org/10.1146/annurev.ge.05.120171.001321
  • Choo, K. H. (1997). Centromere DNA dynamics: Latent centromeres and neocentromere formation. American Journal of Human Genetics, 61(6), 1225-1233. https://doi.org/10.1086/301657
  • Bennetzen, J. L., & Wang, H. (2014). The Contributions of Transposable Elements to the Structure, Function, and Evolution of Plant Genomes. Annual Review of Plant Biology, 65(1), 505-530. https://doi.org/10.1146/annurev-arplant-050213-035811
  • Talbert, P. B., & Henikoff, S. (2020). What makes a centromere? Experimental Cell Research, 389(2), 111895. https://doi.org/10.1016/j.yexcr.2020.111895
  • Ohno. (1972). Ohno “Junk” DNA paper in full, 1972. http://www.junkdna.com/ohno.html
  • Grewal, S. I. S., & Elgin, S. C. R. (2007). Transcription and RNA interference in the formation of heterochromatin. Nature, 447(7143), 399-406. https://doi.org/10.1038/nature05914
  • Plohl, M. (2010). Those mysterious sequences of satellite DNAs. Periodicum Biologorum, 112, 403-410.
  • Harrison, G. E., & Heslop-Harrison, J. S. (1995). Centromeric repetitive DNA sequences in the genus Brassica. Theoret. Appl. Genetics, 90(2), 157-165. https://doi.org/10.1007/BF00222197
  • Plohl, M., Meštrović, N., & Mravinac, B. (2014). Centromere identity from the DNA point of view. Chromosoma, 123(4), 313-325. https://doi.org/10.1007/s00412-014-0462-0
  • Iwata, A., Tek, A. L., Richard, M. M. S., Abernathy, B., Fonsêca, A., Schmutz, J., Chen, N. W. G., Thareau, V., Magdelenat, G., Li, Y., Murata, M., Pedrosa‐Harand, A., Geffroy, V., Nagaki, K., & Jackson, S. A. (2013). Identification and characterization of functional centromeres of the common bean. The Plant Journal, 76(1), 47-60. https://doi.org/10.1111/tpj.12269
  • Kunze, R., Saedler, H., & Lönnig, W.-E. (1997). Plant Transposable Elements. J. A. Callow (Ed.), Advances in Botanical Research (C. 27, ss. 331-470). https://doi.org/10.1016/S0065-2296(08)60284-0
  • Macas, J., Neumann, P., & Navrátilová, A. (2007). Repetitive DNA in the pea (Pisum sativum L.) genome: Comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics, 8, 427. https://doi.org/10.1186/1471-2164-8-427
  • Nagaki, K., Neumann, P., Zhang, D., Ouyang, S., Buell, C. R., Cheng, Z., & Jiang, J. (2005). Structure, Divergence, and Distribution of the CRR Centromeric Retrotransposon Family in Rice. Mol Biol Evol, 22(4), 845-855. https://doi.org/10.1093/molbev/msi069
  • Zhong, C. X., Marshall, J. B., Topp, C., Mroczek, R., Kato, A., Nagaki, K., Birchler, J. A., Jiang, J., & Dawe, R. K. (2002). Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3. The Plant Cell, 14(11), 2825-2836. https://doi.org/10.1105/tpc.006106
  • Lim, K.B., Yang, T.J., Hwang, Y.J., Kim, J. S., Park, J.Y., Kwon, S.J., Kim, J., Choi, B.S., Lim, M.H., Jin, M., Kim, H.I., Jong, H. de, Bancroft, I., Lim, Y., & Park, B.S. (2007). Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. The Plant Journal, 49(2), 173-183. https://doi.org/10.1111/j.1365-313X.2006.02952.x
  • Tek, A.L., Kashihara, K., Murata, M., & Nagaki, K. (2010). Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res, 18(3), 337-347. https://doi.org/10.1007/s10577-010-9119-x
  • Nagaki, K., Song, J., Stupar, R. M., Parokonny, A. S., Yuan, Q., Ouyang, S., Liu, J., Hsiao, J., Jones, K. M., Dawe, R. K., Buell, C. R., & Jiang, J. (2003). Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics, 163(2), 759-770.
  • Schmidt, T., & Heslop-Harrison, J. S. (1998). Genomes, genes and junk: The large-scale organization of plant chromosomes. Trends in Plant Science, 3(5), 195-199. https://doi.org/10.1016/S1360-1385(98)01223-0
  • Mehrotra, S., & Goyal, V. (2014). Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genomics, Proteomics & Bioinformatics, 12(4), 164-171. https://doi.org/10.1016/j.gpb.2014.07.003
  • John, H. A., Birnstiel, M. L., & Jones, K. W. (1969). RNA-DNA hybrids at the cytological level. Nature, 223(5206), 582-587. https://doi.org/10.1038/223582a0
  • Biscotti, M. A., Olmo, E., & Heslop-Harrison, J. S. (Pat). (2015). Repetitive DNA in eukaryotic genomes. Chromosome Res, 23(3), 415-420. https://doi.org/10.1007/s10577-015-9499-z
  • Charlesworth, B., Sniegowski, P., & Stephan, W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371(6494), 215-220. https://doi.org/10.1038/371215a0
  • Tek, A. L., & Jiang, J. (2004). The centromeric regions of potato chromosomes contain megabase-sized tandem arrays of telomere-similar sequence. Chromosoma, 113(2), 77-83. https://doi.org/10.1007/s00412-004-0297-1
  • Tek, A. L., Song, J., Macas, J., & Jiang, J. (2005). Sobo, a Recently Amplified Satellite Repeat of Potato, and Its Implications for the Origin of Tandemly Repeated Sequences. Genetics, 170(3), 1231-1238. https://doi.org/10.1534/genetics.105.041087
  • Heslop-Harrison, J. S., Brandes, A., & Schwarzacher, T. (2003). Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res, 11(3), 241-253. https://doi.org/10.1023/A:1022998709969
  • Zhang, X., Li, X., Marshall, J. B., Zhong, C. X., & Dawe, R. K. (2005). Phosphoserines on Maize Centromeric histone H3 and Histone H3 Demarcate the Centromere and Pericentromere during Chromosome Segregation. The Plant Cell, 17(2), 572-583. https://doi.org/10.1105/tpc.104.028522
  • Birchler, J. A., & Han, F. (2009). Maize Centromeres: Structure, Function, Epigenetics. Annu. Rev. Genet, 43(1), 287-303. https://doi.org/10.1146/annurev-genet-102108-134834
  • Tek, A. L., Kashihara, K., Murata, M., & Nagaki, K. (2011). Functional centromeres in Astragalus sinicus include a compact centromere-specific histone H3 and a 20-bp tandem repeat. Chromosome Res, 19(8), 969-978. https://doi.org/10.1007/s10577-011-9247-y
  • Lee, H. R., Zhang, W., Langdon, T., Jin, W., Yan, H., Cheng, Z., & Jiang, J. (2005). Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc. Natl. Acad. Sci. U.S.A., 102(33), 11793-11798. https://doi.org/10.1073/pnas.0503863102
  • Cheng, Z., Dong, F., Langdon, T., Ouyang, S., Buell, C. R., Gu, M., Blattner, F. R., & Jiang, J. (2002). Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon. The Plant Cell, 14(8), 1691-1704. https://doi.org/10.1105/tpc.003079
  • Gill, N., Findley, S., Walling, J. G., Hans, C., Ma, J., Doyle, J., Stacey, G., & Jackson, S. A. (2009). Molecular and Chromosomal Evidence for Allopolyploidy in Soybean. Plant Physiology, 151(3), 1167-1174. https://doi.org/10.1104/pp.109.137935
  • Liu, Q., Chang, S., Hartman, G. L., & Domier, L. L. (2018). Assembly and annotation of a draft genome sequence for Glycine latifolia, a perennial wild relative of soybean. Plant J, 95(1), 71-85. https://doi.org/10.1111/tpj.13931
  • Mehrotra, S., Goel, S., Sharma, S., Raina, S. N., & Rajpal, V. R. (2013). Sequence analysis of KpnI repeat sequences to revisit the phylogeny of the Genus Carthamus L. Appl. Biochem. Biotechnol, 169(4), 1109-1125. https://doi.org/10.1007/s12010-012-0063-4
  • Silva, D. M. Z. A., Pansonato-Alves, J. C., Utsunomia, R., Daniel, S. N., Hashimoto, D. T., Oliveira, C., Porto-Foresti, F., & Foresti, F. (2013). Chromosomal organization of repetitive DNA sequences in Astyanax bockmanni (Teleostei, Characiformes): Dispersive location, association and co-localization in the genome. Genetica, 141(7-9), 329-336. https://doi.org/10.1007/s10709-013-9732-7
  • Keçeli, B. N., Jin, C., Van Damme, D., & Geelen, D. (2020). Conservation of centromeric histone 3 interaction partners in plants. J Exp Bot, 71(17), 5237-5246. https://doi.org/10.1093/jxb/eraa214
  • Macas, J., Požárková, D., Navrátilová, A., Nouzová, M., & Neumann, P. (2000). Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Gen Genet, 263(5), 741-751. https://doi.org/10.1007/s004380000245
  • Nagaki, K., Talbert, P. B., Zhong, C. X., Dawe, R. K., Henikoff, S., & Jiang, J. (2003). Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics, 163(3), 1221-1225.
  • Novák, P., Neumann, P., Pech, J., Steinhaisl, J., & Macas, J. (2013). RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics , 29(6), 792-793. https://doi.org/10.1093/bioinformatics/btt054
  • Earnshaw, W. C., & Rothfield, N. (1985). Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma, 91(3), 313-321. https://doi.org/10.1007/BF00328227
  • Palmer, D. K., O’Day, K., Wener, M. H., Andrews, B. S., & Margolis, R. L. (1987). A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol, 104(4), 805-815. https://doi.org/10.1083/jcb.104.4.805
  • Yu, H. G., Dawe, R. K., Hiatt, E. N., & Dawe, R. K. (2000). The plant kinetochore. Trends in Plant Science, 5(12), 543-547. https://doi.org/10.1016/S1360-1385(00)01789-1
  • Jiang, J., Birchler, J. A., Parrott, W. A., & Kelly Dawe, R. (2003). A molecular view of plant centromeres. Trends in Plant Science, 8(12), 570-575. https://doi.org/10.1016/j.tplants.2003.10.011
  • Warburton, P. E., Cooke, C. A., Bourassa, S., Vafa, O., Sullivan, B. A., Stetten, G., Gimelli, G., Warburton, D., Tyler-Smith, C., Sullivan, K. F., Poirier, G. G., & Earnshaw, W. C. (1997). Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Current Biology, 7(11), 901-904. https://doi.org/10.1016/s0960-9822(06)00382-4
  • Nagaki, K., Cheng, Z., Ouyang, S., Talbert, P. B., Kim, M., Jones, K. M., Henikoff, S., Buell, C. R., & Jiang, J. (2004). Sequencing of a rice centromere uncovers active genes. Nat. Genet., 36(2), 138-145. https://doi.org/10.1038/ng1289
  • Tek, A. L., Kashihara, K., Murata, M., & Nagaki, K. (2014). Identification of the centromere-specific histone H3 variant in Lotus japonicus. Gene, 538(1), 8-11. https://doi.org/10.1016/j.gene.2014.01.034
  • Tek, A. L., & Kara S. D. Ö. (2020). High allelic diversity of the centromere-specific histone H3 (CENH3) in the legume sainfoin (Onobrychis viciifolia). Mol Biol Rep. https://doi.org/10.1007/s11033-020-05926-1
  • Sullivan, K. F., Hechenberger, M., & Masri, K. (1994). Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol, 127(3), 581-592. https://doi.org/10.1083/jcb.127.3.581
  • Maheshwari, S., Tan, E. H., West, A., Franklin, F. C. H., Comai, L., & Chan, S. W. L. (2015). Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genetics, 11(1), e1004970. https://doi.org/10.1371/journal.pgen.1004970
  • Dawe, R. K., Reed, L. M., Yu, H. G., Muszynski, M. G., & Hiatt, E. N. (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell, 11(7), 1227-1238. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC144275/
  • Ogura, Y., Shibata, F., Sato, H., & Murata, M. (2004). Characterization of a CENP-C homolog in Arabidopsis thaliana. Genes & Genetic Systems, 79(3), 139-144. https://doi.org/10.1266/ggs.79.139
  • Ravi, M., & Chan, S. W. L. (2010). Haploid plants produced by centromere-mediated genome elimination. Nature, 464(7288), 615-618. https://doi.org/10.1038/nature08842
  • Douglas, R. N., & Birchler, J. A. (2013). Plant Centromere Epigenetics. Plant Centromere Biology (ss. 147-158). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118525715.ch11
  • Gent, J. I., Dong, Y., Jiang, J., & Dawe, R. K. (2012). Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications. Nucleic Acids Research, 40(4), 1550-1560. https://doi.org/10.1093/nar/gkr862
  • Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41-45. https://doi.org/10.1038/47412
  • Demidov, D., Heckmann, S., Weiss, O., Rutten, T., Dvořák Tomaštíková, E., Kuhlmann, M., Scholl, P., Municio, C. M., Lermontova, I., & Houben, A. (2019). Deregulated Phosphorylation of CENH3 at Ser65 Affects the Development of Floral Meristems in Arabidopsis thaliana. Front Plant Sci, 10. https://doi.org/10.3389/fpls.2019.00928
  • Zhang, W., Lee, H.-R., Koo, D.-H., & Jiang, J. (2008). Epigenetic Modification of Centromeric Chromatin: Hypomethylation of DNA Sequences in the CENH3-Associated Chromatin in Arabidopsis thaliana and Maize. Plant Cell, 20(1), 25-34. https://doi.org/10.1105/tpc.107.057083
  • Yan, H., Kikuchi, S., Neumann, P., Zhang, W., Wu, Y., Chen, F., & Jiang, J. (2010). Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant Journal, 63(3), 353-365. https://doi.org/10.1111/j.1365-313X.2010.04246.x
  • Wu, Y., Kikuchi, S., Yan, H., Zhang, W., Rosenbaum, H., Iniguez, A. L., & Jiang, J. (2011). Euchromatic Subdomains in Rice Centromeres Are Associated with Genes and Transcription. Plant Cell, 23(11), 4054-4064. https://doi.org/10.1105/tpc.111.090043
  • McClintock, B. (1956). Controlling Elements and the Gene. Cold Spring Harbor Symposia on Quantitative Biology, 21, 197-216. https://doi.org/10.1101/SQB.1956.021.01.017
  • Talbert, P. B., & Henikoff, S. (2018). Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly. Trends in Genet, 34(8), 587-599. https://doi.org/10.1016/j.tig.2018.05.001
  • Topp, C. N., Zhong, C. X., & Dawe, R. K. (2004). Centromere-encoded RNAs are integral components of the maize kinetochore. PNAS, 101(45), 15986-15991. https://doi.org/10.1073/pnas.0407154101
  • May, B. P., Lippman, Z. B., Fang, Y., Spector, D. L., & Martienssen, R. A. (2005). Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats. PLoS Genetics, 1(6). https://doi.org/10.1371/journal.pgen.0010079
  • Yan, H., Ito, H., Nobuta, K., Ouyang, S., Jin, W., Tian, S., Lu, C., Venu, R. C., Wang, G., Green, P. J., Wing, R. A., Buell, C. R., Meyers, B. C., & Jiang, J. (2006). Genomic and Genetic Characterization of Rice Cen3 Reveals Extensive Transcription and Evolutionary Implications of a Complex Centromere. Plant Cell, 18(9), 2123-2133. https://doi.org/10.1105/tpc.106.043794
  • Han, F., Gao, Z., & Birchler, J. A. (2009). Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize. Plant Cell, 21(7), 1929-1939. https://doi.org/10.1105/tpc.109.066662
  • Dunwell, J. M. (2010). Haploids in flowering plants: Origins and exploitation. Plant Biotechnology Journal, 8(4), 377-424. https://doi.org/10.1111/j.1467-7652.2009.00498.x
  • Dwivedi, S. L., Britt, A. B., Tripathi, L., Sharma, S., Upadhyaya, H. D., & Ortiz, R. (2015). Haploids: Constraints and opportunities in plant breeding. Biotechnology Advances, 33(6, Part 1), 812-829. https://doi.org/10.1016/j.biotechadv.2015.07.001
  • Ishii, T., Karimi-Ashtiyani, R., & Houben, A. (2016). Haploidization via Chromosome Elimination: Means and Mechanisms. Annual Review of Plant Biology, 67(1), 421-438. https://doi.org/10.1146/annurev-arplant-043014-114714
  • Ravi, M., & Chan, S. W.-L. (2013). Centromere-Mediated Generation of Haploid Plants. Plant Centromere Biology (ss. 169-181). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118525715.ch13
  • Kuppu, S., Ron, M., Marimuthu, M. P. A., Li, G., Huddleson, A., Siddeek, M. H., Terry, J., Buchner, R., Shabek, N., Comai, L., & Britt, A. B. (2020). A variety of changes, including CRISPR/Cas9‐mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol J, pbi.13365. https://doi.org/10.1111/pbi.13365
  • Kalinowska, K., Chamas, S., Unkel, K., Demidov, D., Lermontova, I., Dresselhaus, T., Kumlehn, J., Dunemann, F., & Houben, A. (2019). State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet, 132(3), 593-605. https://doi.org/10.1007/s00122-018-3261-9
  • Tek, A. L., Stupar, R. M., & Nagaki, K. (2015). Modification of centromere structure: A promising approach for haploid line production in plant breeding. Turk J Agric For, 39(4), 557-562. http://journals.tubitak.gov.tr/agriculture/abstract.htm?id=16664
  • Kelliher, T., Starr, D., Wang, W., McCuiston, J., Zhong, H., Nuccio, M. L., & Martin, B. (2016). Maternal Haploids Are Preferentially Induced by CENH3-tailswap Transgenic Complementation in Maize. Front. Plant Sci., 7. https://doi.org/10.3389/fpls.2016.00414
  • De Storme, N., Keçeli, B. N., Zamariola, L., Angenon, G., & Geelen, D. (2016). CENH3-GFP: A visual marker for gametophytic and somatic ploidy determination in Arabidopsis thaliana. BMC Plant Biol, 16, 1. https://doi.org/10.1186/s12870-015-0700-5
  • Cuacos, M., H Franklin, F. C., & Heckmann, S. (2015). Atypical centromeres in plants-what they can tell us. Front Plant Sci, 6, 913. https://doi.org/10.3389/fpls.2015.00913
  • Martinez-Zapater, J. M., Estelle, M. A., & Somerville, C. R. (1986). A highly repeated DNA sequence in Arabidopsis thaliana. Molec Gen Genet, 204(3), 417-423. https://doi.org/10.1007/BF00331018
  • Murata, M., Ogura, Y., & Motoyoshi, F. (1994). Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet, 69(4), 361-370. https://doi.org/10.1266/jjg.69.361
  • Koukalová, B., Komarnitsky, I. K., & Kuhrová, V. (1993). The distribution of tobacco HRS60 DNA repeated sequences in species of the genus Nicotiana. Plant Science, 88(1), 39-44. https://doi.org/10.1016/0168-9452(93)90107-B
  • Ohmido, N., Ishimaru, A., Kato, S., Sato, S., Tabata, S., & Fukui, K. (2010). Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res, 18(2), 287-299. https://doi.org/10.1007/s10577-009-9103-5
  • Kulikova, O., Geurts, R., Lamine, M., Kim, D. J., Cook, D. R., Leunissen, J., de Jong, H., Roe, B. A., & Bisseling, T. (2004). Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma, 113(6), 276-283. https://doi.org/10.1007/s00412-004-0315-3
  • Neumann, P., Nouzová, M., & Macas, J. (2001). Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome, 44(4), 716-728.
  • Neumann, P., Navrátilová, A., Schroeder-Reiter, E., Koblížková, A., Steinbauerová, V., Chocholová, E., Novák, P., Wanner, G., & Macas, J. (2012). Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genetics, 8(6), e1002777. https://doi.org/10.1371/journal.pgen.1002777
  • Galasso, I., Pignone, D. R., Harrison, G. E., Heslop Harrison, J. S (1999). Location of two repeated DNA sequences of Vigna unguiculata (L.) Walp. On chromosomes and extended DNA fibres by FISH. Journal of Genetics & Breeding (Italy).
  • Iwata-Otsubo, A., Radke, B., Findley, S., Abernathy, B., Vallejos, C. E., & Jackson, S. A. (2016). Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives. G3 (Bethesda), 6(4), 1013-1022. https://doi.org/10.1534/g3.115.024984
  • Ishii, T., Juranić, M., Maheshwari, S., Bustamante, F. de O., Vogt, M. M., Salinas-Gamboa, R., Dreissig, S., Gursanscky, N., How, T., Fuchs, J., Schubert, V., Spriggs, A., Vielle-Calzada, J. P., Comai, L., Koltunow, A. M. G., & Houben, A. (2020). Unequal contribution of two paralogous centromeric histones to function the cowpea centromere. BioRxiv, 2020.01.07.897074. https://doi.org/10.1101/2020.01.07.897074
  • Vahedian, M., Shi, L., Zhu, T., Okimoto, R., Danna, K., & Keim, P. (1995). Genomic organization and evolution of the soybean SB92 satellite sequence. Plant Molecular Biology, 29(4), 857-862. https://doi.org/10.1007/BF00041174
  • Morgante, M., Jurman, I., Shi, L., Zhu, T., Keim, P., & Rafalski, J. A. (1997). The STR120 satellite DNA of soybean: Organization, evolution and chromosomal specificity. Chromosome Res, 5(6), 363-373. https://doi.org/10.1023/A:1018492208247
  • Lin, J.-Y., Jacobus, B. H., SanMiguel, P., Walling, J. G., Yuan, Y., Shoemaker, R. C., Young, N. D., & Jackson, S. A. (2005). Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics, 170(3), 1221-1230. https://doi.org/10.1534/genetics.105.041616
  • Heckmann, S., Macas, J., Kumke, K., Fuchs, J., Schubert, V., Ma, L., Novák, P., Neumann, P., Taudien, S., Platzer, M., & Houben, A. (2013). The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization. Plant J, 73(4), 555-565. https://doi.org/10.1111/tpj.12054
  • Neumann, P., Schubert, V., Fuková, I., Manning, J. E., Houben, A., & Macas, J. (2016). Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes. Front Plant Sci, 7, 234. https://doi.org/10.3389/fpls.2016.00234
International Journal of Advances in Engineering and Pure Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2008
  • Yayıncı: Marmara Üniversitesi