Al6061 T256 alaşımının mikro-frezelenmesinde üst çapak oluşumun ve temizlenmesinin deneysel incelenmesi

Metal parçaların mikro-frezelemesinde oluşan çapak parçanın işlevini olumsuz etkilemekte olup temizlenmesi oldukça zor veya çoğu zaman imkansızdır. Bu çalışmada Al6061 T256 alüminyum alaşımının farklı işleme koşullarında (değişken diş başı ilerlemesi ve işleme (kanal) derinliği için) kanal mikro-frezelemesi sonucunda eş-yönlü frezeleme tarafı (EYFT) üstünde oluşan üst çapağının ortalama yüksekliğinin değişimi deneysel olarak işlenmiştir. Değişik işleme koşullarında EYFT’nda oluşan üst çapağının mikro-frezeleme ile temizlenebilmesi için değişik radyal derinlik (RD) kullanılarak (10, 15 ve 20 mikrometre) zıt-yönlü frezeleme yapılmıştır. Deneylerde oluşan çapağın sürekli yapıda olduğu, yüksekliğinin kanal boyunca değişim gösterdiği ve Poison tipi olduğu görülmüştür. RD=15 mikrometre değerinin oluşan çapağı önemli ölçüde (çapak yüksekliğini %80-84 mertebesinde) temizlediği, daha yüksek RD kullanımının çapak temizlemede fazla etkili olmadığı tespit edilmiştir.

Experimental investigation on the top burr formation and its’ removal in micro-milling of Al6061 T256 alloy

The burr formed in the micro-milling of metal parts adversely affects the function of the part and is very difficult or often impossible to remove. In this study, the variation of the average height of the top burr formed on the down-milling side (DMS) as a result of channel micro-milling of Al6061 T256 aluminum alloy under different machining conditions (for varying feed per tooth and milling (channel) depth settings) was experimentally investigated. Up-milling operations were performed at different radial depth (RD) values (10, 15 and 20 micrometer) so that the upper burr formed in the DMS under different machining conditions could be removed by micro-milling. It was found that the burr formed in the experiments was continuous, its height varied along the channel and it was Poison type. It was determined that the RD=15 micrometer value significantly removes the formed burr (reducing the burr height by 80-84%), and the use of the higher RD was not further effective in burr removal.

___

  • [1] Geier, N., Szalay, T., Takács M. (2019). Analysis of thrust force and characteristics of uncut fibres at non-conventional oriented drilling of unidirectional carbon fiber-reinforced plastic (UD-CFRP) composite laminates. Int. J. Adv. Manuf. Technol., 100, 3139–3154.
  • [2] de Oliveira, F.B., Rodrigues, A.R., Coelho, R.T., de Souza, A.F. (2015). Size effect and minimum chip thickness in micro milling. Int. J. Mach. Tools. Manuf., 89, 39–54.
  • [3] Ni, C., Chen, M., Wu, C., Pei, X., Qian, J., Reynaerts, D. (2017). Research in minimum undeformed chip thickness and size effect in micro end-milling of potassium dihydrogen phosphate crystal. Int. J. Mech. Sci., 134, 387-398.
  • [4] Jáuregui, J.C., Reséndiz, J.R., Thenozhi, S., Szalay, T., Jacso, A., Takacs, M. (2018). Frequency and time-frequency analysis of cutting force and vibration signals for tool condition monitoring. IEEE Access PP(99), 1–1.
  • [5] Singh, K.K., Singh, R. (2018). Chatter stability prediction in highspeed micromilling of Ti6Al4V via finite element based micro end mill dynamics. Adv. Manuf., 6, 95–106.
  • [6] Wang, J.J., Uhlmann, E., Oberschmidt, D., Sung, F., Perfilov, I. (2016). Critical depth of cut and asymptotic spindle speed for chatter in micro milling with process damping. CIRP Ann. Manuf. Technol., 65, 113–116.
  • [7] Aslantaş, K., Hopa, H.E., Perçin, M., Ucun, İ., Çiçek, A. (2016). Cutting performance of nano-crystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy. Precis. Eng., 45, 55–66.
  • [8] Kiswanto, G., Zariatin, D.L., Ko, T.J. (2014). The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. J. Manuf. Process., 16, 435–450.
  • [9] Oliaei, S.N.B., Karpat, Y. (2017). Built-up edge effects on process outputs of titanium alloy micro milling. Precis. Eng., 49, 305–315.
  • [10] Zhang, X., Yu, T., Wang, W., Zhao, J. (2019). Improved analytical prediction of burr formation in micro end milling. Int. J. Mech. Sci., 151, 461–470.
  • [11] Aurich, J.C., Dornfeld, D., Arrazola, P.J., Franke, V., Leitz, L., Min, S. (2009). Burrs—analysis, control and removal. CIRP Ann. Manuf. Technol., 58, 519–542.
  • [12] Lee, K., Dornfeld, D.A. (2005). Micro-burr formation and minimization through process control. Precis. Eng., 29, 246–252.
  • [13] Hashimura, M., Hassamontr, J., Dornfeld, D.A. (1999). Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation. J. Manuf. Sci. Eng., 121, 13–19.
  • [14] Kumar, P., Bajpai, V., Singh, R. (2016). Burr height prediction of Ti6Al4V in high speed micro-milling by mathematical modeling. Manuf. Lett., 11, 12-16.
  • [15] Zhang, T., Liu, Z., Xu, C. (2013). Influence of size effect on burr formation in micro cutting. Int J. Adv. Manuf. Technol., 68, 1911– 1917.
  • [16] Kumar, P., Kumar, M., Bajpai, V., Singh, N.K. (2017). Recent advances in characterization, modeling and control of burr formation in micro-milling. Manuf. Lett., 13, 1–5.
  • [17] Saptaji, K., Subbiah, S. (2017). Burr reduction of micro-milled microfluidic channels mould using a tapered tool. Procedia Eng., 184, 137–144.
  • [18] Wu, X., Li, L., He, N. (2017). Investigation on the burr formation mechanism in micro cutting. Precis. Eng., 47, 191–196.
  • [19] Mian, A.J., Driver, N., Mativenga, P.T. (2011). Identification of factors that dominate size effect in micro-machining. Int. J. Mach. Tools Manuf., 51, 383–394.
  • [20] Balázs, B.Z., Szalay, T., Takács, M. (2017). Investigation of micro milled surface characteristics. Proc. Int. Conf. on Innovative Technologies, 161–164.
  • [21] Biermann, D., Steiner, M. (2012). Analysis of micro burr formation in austenitic stainless steel X5CrNi18-10. Procedia CIRP, 3, 97–102.
  • [22] Hajiahmadi, S. (2019). Burr size investigation in micro milling of stainless steel 316 L. Int. J. Lightweight Mater. Manuf., 2, 296–304.
  • [23] Aramcharoen, A., Mativenga, P.T. (2009). Size effect and tool geometry in micromilling of tool steel. Precis. Eng., 33, 402–407.
  • [24] Piquard, R., D’Acunto, A., Laheurte, P., Dudzinski, D. (2014). Microend milling of NiTi biomedical alloys, burr formation and phase transformation. Precis. Eng., 38, 356–364.
  • [25] Chen, M.J., Ni, H.B., Wang, Z.J., Jiang, Y. (2012). Research on the modeling of burr formation process in micro-ball end milling operation on Ti–6Al–4V. Int. J. Adv. Manuf. Technol., 62, 901–912.
  • [26] Gilbin, A., Fontaine, M., Michel, G., Thibaud, S., Picard, P. (2013). Capability of tungsten carbide micro-mills to machine hardened tool steel. Int. J. Precis. Eng. Manuf., 14, 23–28.
  • [27] Aramcharoen, A., Mativenga, P., Yang, S., Cooke, K., Teer, D. (2008). Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int. J. Mach. Tools Manuf., 48, 1578–1584.
  • [28] Swain, N., Venkatesh, V., Kumar, P., Srinivas, G., Ravishankar, S., Barshillia, H. (2017). An experimental investigation on the machining characteristics of Nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills. CIRP J. Manuf. Sci. Technol., 16, 34–42.
  • [29] Kou, Z., Wan, Y., Cai, Y., Liang, X., Liu, Z. (2015). Burr controlling in micro milling with supporting material method. Procedia Manuf., 1, 501–511.
  • [30] Saptaji, K., Subbiah, S., Dhupia, J.S. (2012). Effect of side edge angle and effective rake angle on top burrs in micromilling. Precis. Eng. 36, 444–450.
  • [31] Kuram, E. (2017). Kesici Takım Bağlama Uzunluğunun Mikro Frezelemede Takım Aşınması, Kuvvetler ve Çapak Boyutu Üzerindeki Etkileri, Dokuz Eylül Üniversitesi-Müh. Fak. Fen ve Müh. Dergisi,19, 229-237.
  • [32] Milling Finish: Complete Guide (Tips, Techniques, and Secrets), https://www.cnccookbook.com/milling-finishcomplete-guide-feeds-speeds-master-class-lesson-7/ (Mart 2022).
  • [33] How to Choose a Stepover for 3D Profiling, https://www.cnccookbook.com/cnc-stepover/, (Mart 2022).
  • [34] Rasband, W.S., ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2016, http://imagej.nih.gov/ij, (Haziran 2022).
  • [35] MATWEB, Material Property Data, http://www.matweb.com/index.aspx, (Nisan 2022).
  • [36] 6061 Aluminium, https://en.wikipedia.org/wiki/6061_aluminium_alloy, (Mayıs 2022)