Tıbbi Uygulamalar için Hidroksiapatit Toz Katkılı Elektro Erozyon İşleme ile Ti6Al4V Yüzey Modifikasyonu

Hidroksiapatit (HA) katkılı Elektro Erozyon İşleme (EEİ) ile Titanyum yüzey modifikasyonu, yüzey pürüzlülüğü, yüzey kimyasi, ıslatılabilirlik gibi yüzey özelliklerine bağlı olan kemikte biyolojik performans ve uyumluluğun arttırılması için alternatif ve gelecek vaat eden bir tekniktir. HA tozu katkılı elektro erozyon ile işlenen Ti6Al4V yüzeyler, osteoblastik hücre aktivitesini geliştirmek için ilk kez bu çalışmada kullanılmıştır. Deiyonize sudaki farklı HA konsantrasyonları EEİ sırasında deneysel bir değişken olarak test edildi. Zımparalanmış ve toz ilavesi olmadan elektro erozyon ile işlenmiş kontrol yüzeyleri, karşılaştırma amaçli kullanılmıstır. Analiz edilen numunelerin yüzey özellikleri Taramalı Elektron Mikroskobu (SEM), Enerji Dağılım Spektroskopisi (EDS), X-Işını Difraktometrisi (XRD), beyaz ışık interferometrisi ve temas açısı ölçümleri ile değerlendirildi. Islatılabilirlik testleri, hidroksiapatit toz katkili EEİ’nin yüzeylerinin diğer yüzeylere kıyasla daha yüksek hidrofilik özellik sergilediğini göstermektedir. MTT testinden elde edilen sonuçlar, HA tozu katkılı damıtılmış su kullanılarak modifiye edilmiş yüzeylerin önemli derecede hücre bağlanma ve büyümesini desteklediğini göstermiştir. Sonuçlar, HA tozu katkili EEİ ‘nin, titanyum alaşımları gibi biyomalzemelerin yüzey modifikasyonu için umut verici bir yöntem oldugunu göstermektedir.

Ti6Al4V Surface Modification by Hydroxyapatite Powder Mixed Electrical Discharge Machining for Medical Applications

Titanium surface modification by the Hydroxyapatite (HA) mixed Electrical Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfaces for Ti6Al4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys.

___

  • [1] Chen, S. L., Lin, M. H., Chen, C. C., and Ou, K. L., (2008). Effect of electro-discharging on formation of biocompatible layer on implant surface. Journal of Alloys and Compounds, 456 (1–2), 413–418.
  • [2] Peng, P.-W., Ou, K.-L., Lin, H.-C., Pan, Y.-N., and Wang, C.- H., (2010). Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium. Journal of Alloys and Compounds, 492 (1–2), 625–630.
  • [3] Yang, T. Sen, Huang, M. S., Wang, M. S., Lin, M. H., Tsai, M. Y., and Wang Wang, P. Y., (2013). Effect of electrical discharging on formation of nanoporous biocompatible layer on Ti- 6Al-4V alloys. Implant Dentistry, 22(4), 374–379.
  • [4] Lee, W. F., Yang, T. Sen, Wu, Y. C., and Peng, P. W., (2013), “Nanoporous biocompatible layer on Ti-6Al-4V alloys enhanced osteoblast-like cell response. Journal of Experimental and Clinical Medicine, 5(3), 92–96.
  • [5] Lee, B. E. J., Ho, S., Mestres, G., Karlsson Ott, M., Koshy, P., and Grandfield, K., (2016). Dual-topography electrical discharge machining of titanium to improve biocompatibility”, Surface and Coatings Technology. 296, 149–156.
  • [6] Murali, M., and Yeo, S. H., (2004). Rapid biocompatible micro device fabrication by micro electro-discharge machining. Biomedical Microdevices, 6(1), 41–45.
  • [7] Ntasi, A., Mueller, W. D., Eliades, G., and Zinelis, S., (2010). The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys. Dental Materials, 26(12), 237–245.
  • [8] Uno, Y., Okada, A., and Cetin, S., (2001). Surface Modification of EDMed Surface with Powder Mixed Fluid. 2nd International Conference on Desing and Production of Dies and Molds.
  • [9] Furutani, K., Saneto, A., Takezawa, H., Mohri, N., and Miyake, H., (2001). Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Journal of the International Societies for Precision Engineering and Nanotechnology, 25, 138–144.
  • [10] Furutani, K., Sato, H., and Suzuki, M., (2009). Influence of electrical conditions on performance of electrical discharge machining with powder suspended in working oil for titanium carbide deposition process. International Journal of Advanced Manufacturing Technology, 40(11–12), 1093–1101.
  • [11] Janmanee, P., and Muttamara, A., (2012). Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension. Applied Surface Science, 258(19), 7255–7265.
  • [12] Kumar, S., and Batra, U., (2012). Surface modification of die steel materials by EDM method using tungsten powder- mixed dielectric. Journal of Manufacturing Processes, 14(1), 35–40.
  • [13] Yaşar, H., and Ekmekci, B., (2013). Ti-6Al-4V Surfaces in SiC Powder Mixed Electrical Discharge Machining. Advanced Materials Research, 856, 226–230.
  • [14] Jabbaripour, B., Sadeghi, M. H., Shabgard, M. R., and Faraji, H., (2013). Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic. Journal of Manufacturing Processes, 15(1), 56–68.
  • [15] Amorim, F. L., Dalcin, V. A., Soares, P., and Mendes, L. A., (2017). Surface modification of tool steel by electrical discharge machining with molybdenum powder mixed in dielectric fluid. International Journal of Advanced Manufacturing Technology, 91(1–4), 341–350.
  • [16] Li, L., Zhao, L., Li, Z. Y., Feng, L., and Bai, X., (2017). Surface characteristics of Ti-6Al-4V by SiC abrasive-mixed EDM with magnetic stirring. Materials and Manufacturing Processes, 32(1), 83–86.
  • [17] Harcuba, P., Bačáková, L., Stráský, J., Bačáková, M., Novotná, K., and Janeček, M., (2012). Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopedics. Journal of the Mechanical Behavior of Biomedical Materials, 7, 96–105.
  • [18] Chen, S. L., Lin, M. H., Huang, G. X., and Wang, C. C., (2014). Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Applied Surface Science, 311, 47–53.
  • [19] Prakash, C., Kansal, H. K., Pabla, B. S., and Puri, S., (2015). Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on b – Ti Implant by Powder Mixed Electric Discharge Machining. Journal of Materials Engineering and Performance, 24(9), 3622–3633.
  • [20] Prakash, C., Kansal, H. K., Pabla, B. S., and Puri, S., (2016). Powder Mixed Electric Discharge Machining: An Innovative Surface Modification Technique to Enhance Fatigue Performance and Bioactivity of β – Ti Implant for Orthopedics Application. Journal of Computing and Information Science in Engineering, 16(4), 41006.
  • [21] Prakash, C., Kansal, H. K., Pabla, B. S., and Puri, S., (2016). Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. Journal of Mechanical Science and Technology, 30(9), 4195–4204.
  • [22] Prakash, C., Kansal, H. K., Pabla, B. S., and Puri, S., (2017). Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Materials and Manufacturing Processes, 32(3), 274–285.
  • [23] Prakash, C., Kansal, H. K., Pabla, B. S., and Puri, S., (2017). On the Influence of Nanoporous Layer Fabricated by PMEDM on β-Ti Implant: Biological and Computational Evaluation of Bone-Implant Interface. Materials Today: Proceedings, 4(2), 2298–2307.
  • [24] Ekmekci, N., Ekmekci, B., (2013). Hydroxyapatite Deposition onto Ti-6Al-4V Surface in Powder Mixed Electrical Discharge Machining. 2nd International Conference on Material Science and Engineering Technology, London, The United Kingdom.
  • [25] Ekmekci, N. and Ekmekci, B., (2016). Electrical discharge machining of Ti6Al4V in hydroxyapatite powder mixed dielectric liquid. Materials and Manufacturing Processes, 31(13), 1663-1670.
  • [26] Prakash, C., and Uddin, M. S., (2017). Surface modification of β-phase Ti implant by hydroxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surface and Coatings Technology Part A, 326, 134–145.
  • [27] Ou, S. F., and Wang, C. Y., (2017). Effects of bioceramic particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys. Journal of Materials Processing Technology, 245, 70–79.
  • [28] Aliyu, A. A., Abdul-rani, A. M., Ginta, T. L., Prakash, C., Axinte, E., and Fua-nizan, R., (2017). Investigation of nanoporosities fabricated on metallic glass surface by hydroxyapatite mixed EDM for orthopedic application. Malaysian Journal of Fundamental and Applied Science Special Issue on Medical Device and Technology, 523–528.
  • [29] Otsuka, F., Kataoka, Y. and Miyazaki, T., (2012). Enhanced osteoblast response to electrical discharge machining surface. Dental Materials Journal, 31(2), 309-315.