LaCrO3 Perovskit Bileşiğinin Sentezi, Karakterizasyonu ve Elektriksel Admittans Çalışması

Ferroelektrik perovskit oksit LaCrO3’ü (LCO) katı hal reaksiyonu yöntemiyle sentezledik. Sentezlenen tozun yapısal ve kimyasal analizini yapmak için sırasıyla, taramalı elektron mikroskobu (SEM), enerji x-ışını dağılımı (EDX) ve X ışını kırınımı (XRD) yöntemleri kullanılmıştır. Perovskit oksit örneğinin elektriksel admittans özellikleri, dielektrik/empedans spektrometresi kullanılarak geniş bir frekans (1Hz- 10MHz) ve sıcaklık (-100 °C ile +100 °C) aralığında gerçekleştirilmiştir. Sonuçlar, LCO’ nun farklı aktivasyon enerjilerine sahip olduğunu ve hesaplanan aktivasyon enerjilerinin sırasıyla, Gdc& 1000/T grafiğinden 0.175 eV ve 0.220 eV, fmin&1000/T grafiğinden de 0.152 eV ve 0.197 eV olduğu görülmüştür. Sıcaklığa bağlı s parametresi, örtüşen büyük polaron tünelleme (OLPT), kuantum mekaniksel tünelleme (QMT) ve ilişkili bariyer hoplama (CBH) iletim mekanizması modellerinin LCO bileşiği için önerilebileceğini göstermiştir.

Synthesis, Characterization and Electrical Admittance Study of LaCrO3Perovskite Compound

We synthesized the ferroelectric perovskite oxide LaCrO3 (LCO) using solid-state reaction method. Scanning electron microscope (SEM),energy x-ray dispersive (EDX) and X-ray diffraction (XRD) have been employed to study structural and chemical analysis of synthesizedpowder, respectively. Electrical admittance properties of the perovskite oxide sample was performed in wide range frequency (1Hz-10MHz) and temperature (-100 °C to +100 °C) using dielectric/impedance spectrometer. The results showed that the LCO has differentactivation energies and the calculated activation energies are of 0.175 eV and 0.220 eV from the Gdc vs. 1000/T and 0.152 eV and 0.197eV from the fmin vs. 1000/T plots, respectively. The temperature-dependent exponent s showed that the overlapping large polaron tunneling(OLPT), quantum mechanical tunneling (QMT) and the correlated barrier hopping (CBH) conduction mechanism models can be suggestedfor the LCO compound.

___

  • [1] Panpan, Z., Hongwei, Q., Heng, Z., Wei, L., Jifan, H. (2017). CO2 gas sensors based on Yb1−xCaxFeO3 nanocrystalline powders. Journal of Rare Earths, 35(6), 602.
  • [2] Hilpert, K., Steinbrech, R.W., Boroomand, F., Wessel, E., Meschke, F., Zuev, A., Teller, O., Nickel, H., Singheiser, L., (2003). Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 23, 3009-3020.
  • [3] Wang, S., Dong, Y., Lin, B., Gao, J., Liu, X., Meng, G., (2009). Fabrication of dense LaCrO3 – based interconnect thin membrane on anode substrates by co-firing. Mater. Res. Bull., 44, 2127-2133.
  • [4] Azad, A. M., Sudha, R., Sreedharan, O. M., (1990). Thermodynamic stability of LaCrO3 by a CaF2-based E.M.F. method. J. Less Common Metals. 166, 57–62.
  • [5] Rida, K., Benabbas, A., Bouremmad, F., Pen, M. A., Sastre, E., Martinez-Arias, A., (2008). Effect of strontium and cerium doping on the structural characteristics and catalytic activity for C3H6 combustion of perovskite LaCrO3 prepared by solgel. Appl. Catal. B Environ., 84, 457-467.
  • [6] Coskun, M., Polat, O., Coskun, F. M., Durmus, Z., Çaglar, M., Türüt, A., (2018). Frequency and temperature dependent electrical and dielectric properties of LaCrO3 and Ir doped LaCrO3 perovskite compounds. Journal of Alloys and Compounds, 740, 1012-1023.
  • [7] Adem, U., Mufti, N., Nugroho, A. A., Catalan, G., Noheda, B., Palstra, T. T. M., (2015). Dielectric relaxation in YMnO3 single crystals. Journal of Alloys and Compounds, 638, 228– 232.
  • [8] Chao, Z., Xiaofei, W., Zhaowu, W., Haitao, Y., Haisheng, L., Liben, L., (2016). Dielectric relaxation, electric modulus and ac conductivity of Mn-doped YFeO3. Ceramics International, 42, 19461–19465.
  • [9] Jie, Z., Zhenxing, Y., Yu, L., Xiaohua, Z., Longtu, L., (2017). Understanding the thermally stimulated relaxation and defect behavior of Ti-containing microwave dielectrics: A case study of BaTi4O9. Materials & Design, 130, 479–487.
  • [10] Polat, O., Coskun, M., Coskun, F. M., Durmus, Z., Çaglar, M., Türüt, A. (2018). Os doped YMnO3 multiferroic: A study investigating the electrical properties through tuning the doping level. Journal of Alloys and Compounds, 752, 274-288.
  • [11] Mori, M., Sammes, N. M., (2002). Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method. Solid State Ionics, 146, 301–312.
  • [12] Vazquez, I. P. R., Angeles, J. C. R., Galicia, J. L. R., Jhu, K., Yanagisawa, K., (2004). Hydrothermal synthesis and sintering of lanthanum chromite powders doped with calcium. Solid State Ionics, 172, 389.
  • [13] Masato, I., Hirotsugu, T., Kyota, U., Tadashi, E., Masahiko, S. (1998). Microwave synthesis of LaCrO3. J. Mater. Chem., , 8, 2765–2768
  • [14] Zhang, G. J., Song, Y. W., Xiong, H., Zheng, J. Y., Jia, Y.Q., (2002). Synthesis and crystal structure of La0.9Ca0.1Cr1− xNixO3 (x = 0.0–1.0) and electric conductivity of La0.9Ca0.1Cr 0.5Ni0.5O3. Mater. Chem. Phys., 73, 101.
  • [15] Correa, H. P. S., Paiva-Santos, C. O., Setz, L. F., Martinez, L. G., Mello-Castanhe, S. R. H., Orlando M. T. D., (2008). Crystal structure refinement of Co-doped lanthanum chromites. Powder Diff. Suppl., 23, S18.
  • [16] Li, D.-H., He, S.-F., Chen, J., Jiang, C.-Y., Yang, C., (2017). Solid-state Chemical Reaction Synthesis and Characterization of Lanthanum Tartrate Nanocrystallites Under Ultrasonication Spectra, IOP Conf. Series: Materials Science and Engineering, 242, 012023.
  • [17] Polat, O., Durmus, Z., Coskun, F. M., Coskun, M., Turut, A., (2018). Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir), J. Mater. Sci., 53, 3544– 3556.
  • [18] Pudmich, G., Boukamp, B.A., Gonzalez-Cuenca, M., Jungen, W., Zipprich, W., Tietz, F. (2000). Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid State Ion., 135, 433–438.
  • [19] Fergus, J.W. (2004). Lanthanum Chromite-based Materials for Solid Oxide Fuel Cell Interconnects. Solid State Ion., 171, 1–15.
  • [20] Kenji, Y., Naoshi, I., Yutaka, S., Yoshinobu, I., (2017). Absence of a polar phase in perovskite chromite RCrO3 (R=La and Pr), Materials Chemistry and Physics, 190, 96-101.
  • [21] Khetre, S. M., Chopade, A. U., Khilare, C. J., Jadhav, H. V., Jagadale, P. N., Bamane,S. R., (2013). Electrical and dielectric properties of nanocrystalline LaCrO3, J. Mater. Sci: Mater. Electron., 24, 4361–4366.
  • [22] Nithya, V.D., Immanuel, J. R., Senthilkumar, S.T., Sanjeeviraja, C., Perelshtein, I., Zitoun, D., Selvan K. R., (2012). Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol–gel method, Materials Research Bulletin, 47 1861–1868
  • [23] Yong, S. L., Jae-Hoon, P., Jong, S. C., (2003). Frequency-Dependent Electrical Properties of Organic Light-Emitting Diodes. Journal of the Korean Physical Society, 42, 294-297.
  • [24] Coskun, M., Polat, O., Coskun, F. M., Durmus, Z., Çaglar, M., Türüt, A. (2018). The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv., 8, 4634–4648.
  • [25] Jung, W. H. (2008). AC conduction mechanisms of Gd1/3Sr2/ 3FeO3 ceramic. Physica B, 403, 636-638.
  • [26] Wang, K., Chen, H., Shen, W.Z., (2003). AC electrical properties of nanocrystalline silicon thin films. Physica B, 336, 369-378.
  • [27] Abdelmoneim, H. M. (2010). Dielectric and ac conductivity οf potassium perchlorate, KCLO{4}. Acta Phisica Polonica A, 117, 936-940.
  • [28] Elliott, S. R. (1977). A theory of a.c. conduction in chalcogenide glasses. Philos. Mag. B., 36, 1291-1304.