DÖRT BACAKLI KEŞİF ROBOTUNUN PROTOTİP TASARIMI VE ÜÇ BOYUTLU (3B) YAZICI İLE İMALATI

Dört bacaklı robotlar, çeviklik, dengeli hareket ve farklı zorlu arazi şartlarına uyum sağlama yetenekleri nedeni ile keşif, arama kurtarma, tarım, inşaat ve askeri alanlarda büyük ilgi görmektedir. Ayaklı robotlara her alandan uzmanın ilgisi artarken, araştırmacılar uygun maliyetli ve yüksek manevra yetenekli robotlar geliştirmek adına çalışmalarını sürdürmektedirler. Bu çalışma, dört bacaklı bir 12 serbestlik dereceli bir robotun tasarımı, 3 boyutlu yazıcıda üretilmesi ve ileri kinematik analizine ait detaylar sunulmuştur. Robotun üç boyutlu modeli SolidWorks programında modellenmiş ve sonrasında parça modelleri 3 boyutlu baskı teknolojisi kullanılarak PLA malzemeden imal edilmiştir. Robotun her bir bacağı üç serbestlik dereceli olup, aktuatör olarak DC servo motorlar kullanılmıştır. Robotun denge ve yörünge kontrol yazılımları Arduino Mega gömülü sistem kartı üzerinde geliştirilmiştir. Robot uzaktan kumanda edilmektedir ve üzerinde yer alan RGB kamera sayesinde çevresel algılama da yapabilmektedir. Bu çalışmanın, düşük bütçeli ve kolayca imal edilebilir dört ayaklı bir robota ihtiyaç duyan araştırmacılara yol göstermesi açısından akademik çalışmalara katkıda bulunması hedeflenmiştir.

PROTOTYPE DESIGN AND MANUFACTURING OF A FOUR-LEGED EXPLORATION ROBOT WITH A THREE-DIMENSIONAL (3D) PRINTER

Four-legged robots have gained significant interest in fields such as exploration, search and rescue, agriculture, construction, and the military due to their agility, balanced movement, and adaptability to various challenging terrains. As person from different domains show increasing interest in legged robots, researchers continue their efforts to develop cost-effective and highly maneuverable robotic systems. This study presents the details of the design, 3D printing, and advanced kinematic analysis of a twelve-degree-of-freedom quadruped robot. The three-dimensional model of the robot was created using the SolidWorks program, and its component parts were 3D printed using PLA material. Each leg of the robot has three degrees of freedom, utilizing DC servo motors as actuators. The robot's balance and trajectory control software were developed on an Arduino Mega embedded system board. The robot can be controlled remotely and is equipped with an RGB camera for environmental perception. The aim of this study is to contribute to academic research by providing guidance to researchers in need of a low-budget and easily manufacturable four-legged robot.

___

  • 1. Biswal, P., Mohanty, P.K., “Development of quadruped walking robots: A review”, Ain Shams Engineering Journal, Vol. 12, Issue 2, Pages 2017-2031, 2021.
  • 2. Katz, B., Carlo, J.D., Kim, S., “Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control”, In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Pages 6295–6301, 2019.
  • 3. Chen, Y., Nguyen, Q., “Adaptive Force-based Control for Legged Robots”, arXiv, arXiv:cs.RO/2011.06236, 2021.
  • 4. García-Cárdenas, F., Soberón, N., Ramos, O.E., Canahuire, R.C., “Low-cost Open-source Semi-Autonomous Quadruped Robot”, In Proceedings of the 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Pages 281–286, 2020.
  • 5. Boney, R., Sainio, J., Kaivola, M., Solin, A., Kannala, J., “RealAnt: An Open-Source Low-Cost Quadruped for Research in Real-World Reinforcement Learning”, arXiv, arXiv:2011.03085, 2020.
  • 6. Sun, T., Xiong, X., Dai, Z., Manoonpong, P., “Small-Sized Reconfigurable Quadruped RobotWith Multiple Sensory Feedback for Studying Adaptive and Versatile Behaviors”, Front. Neurorobot, Vol. 14, 2020.
  • 7. Kau, N., Schultz, A., Ferrante, N., Slade, P., “Stanford Doggo: An Open-Source, Quasi-Direct-Drive Quadruped”, In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Pages 6309–6315, 2019.
  • 8. Grimminger, F., Meduri, A., Khadiv, M., Viereck, J., Wüthrich, M., Naveau, M., Berenz, V., Heim, S., Widmaier, F., Flayols, T., et al., “An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research”, IEEE Robot. Automat. Lett., Vol. 5, Pages 3650–3657, 2020.
  • 9. Kim, J., Kang, T., Song, D., Yi, S.J., “Design and Control of a Open-Source, Low Cost, 3D Printed Dynamic Quadruped Robot”, Appl. Sci., Vol. 11, Pages 3762, 2021.
  • 10. Gu, Y., Feng, S., Guo, Y., Wan, F., Dai, J.S., Pan, J., Song, C., “Overconstrained coaxial design of robotic legs with omni-directional locomotion”, Mechanism and Machine Theory, Vol. 176, Issue 105018, 2022.
  • 11. Lu, M., Jing, B., Duan, H., Gao, G., "Design of a Small Quadruped Robot with Parallel Legs", Complexity, Vol. 2022, Pages 1-11, 2022.
  • 12. Tsvetkov, Y., Ramamoorthy, S., “A Novel Design and Evaluation of a Dactylus-Equipped Quadruped Robot for Mobile Manipulation”, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.
  • 13. Mudalige, N.D.W., Nazarova, E., Babataev, I., Kopanev, P., Fedoseev, A., Cabrera, M.A., Tsetserukou, D., “Dogtouch: Cnn-based recognition of surface textures by quadruped robot with high density tactile sensors”, In 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), Pages 1-5, 2022.
  • 14. Mudalige, N.D.W., Zhura, I., Babataev, I., Nazarova, E., Fedoseev, A., Tsetserukou, D., “Hyperdog: An open-source quadruped robot platform based on ros2 and micro-ros”, In 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Pages 436-441, 2022.
  • 15. Rahme, M., Abraham, I., Elwin, M.L., Murphey, T.D., “Linear policies are sufficient to enable low-cost quadrupedal robots to traverse rough terrain”, In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pages 8469-8476, 2021.
  • 16. Rahman, M.H., Alam, S.B., Mou, T.D., Uddin, M.F., Hasan, M., “A Dynamic Approach to Low-Cost Design, Development, and Computational Simulation of a 12DoF Quadruped Robot”, Robotics, Vol. 12, Issue 28, Pages 1-23, 2023.
  • 17. Sun, Y., Zong, C., Pancheri, F., Chen, T., Lueth, T.C., “Design of topology optimized compliant legs for bio-inspired quadruped robots”, Scientific Reports, Vol. 13, Issue 4875, Pages 1-11, 2023.
  • 18. Zhang, Y.N., An, M.Q., “Structure and software architecture design of an extremely low-cost quadruped robot for education”, In Journal of Physics: Conference Series, Vol. 1931, Issue 1, Pages 012007), 2021.
  • 19. Yan, W., Pan, Y., Che, J., Yu, J., Han, Z., “Whole-body kinematic and dynamic modeling for quadruped robot under different gaits and mechanicm topologies”, PeerJ Computer Science, Vol. 7, Pages 1-21, 2021.
  • 20. Wang, H., Chai, H., Chen, B., Xie, A., Song, R., Su, B., “Flying trot control method for quadruped robot based on trajectory planning”, Journal of Mechatronics, Pages 1-35, 2022.
  • 21. Zhang, D., Gao, Z., “Forward kinematics, performance analysis and multi-objective optimization of a bio-inspired parallel manipülator”, Robotics and Comuter-Integrated Manufacturing, Vol. 28, Pages 484-492, 2012.
  • 22. Nahangi, M., Yeung, J., Haas, C.T., Walbridge, S., West, J., “Automated assembly discrepancy feedback using 3D imaging and forward kinematics”, Automation in Construction, Vol. 56, Pages 36-46.
  • 23. Ayyıldız, M., Çetinkaya, K., “Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipülatör”, Neural Comput & Applic Vol. 27, Pages 825–836, 2016.
  • 24. Tatar, A.B., Taşar, B., Yakut, O., “A shooting control application of four-legged robots with a gun turret”, Arabian Journal for Science and Engineering, Vol. 45, Pages 5191-5206, 2020.
  • 25. Liu, H., Zhou, W., Lai, X., Zhu, S., “An efficient inverse kinematic algorithm for a PUMA560-Structured robot manipülator”, International Journal of Advanced Robotic Systems, Vol. 10, Pages 1-5, 2013
International Journal of 3D Printing Technologies and Digital Industry-Cover
  • ISSN: 2602-3350
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2017
  • Yayıncı: KERİM ÇETİNKAYA