EĞİTİM VE ARAŞTIRMA AMAÇLI 3B BASKILI KARACİĞER FANTOM TASARIMI

Son yıllarda, üç boyutlu (3B) yazıcı sağlık alanında yaygın olarak kullanılmaya başlanmıştır. Normal ölçülerdeki bir insan vücudundaki, organları orijinal boyutlarında elde etmek için 3B teknolojisinden yararlanılmaktadır. Bu çalışmada öğrenci eğitiminde ve çok amaçlı araştırmalarda kullanılmak üzere, içinde patolojik bir karaciğer modeli olan fantom dijital ortamda tasarlanıp 3B olarak basılmıştır. Tasarlanıp basılan model insan anatomisine uygun olup, üzerinde karaciğer organında görülen anatomik özelliklerin çoğu çeperinde tasarlanmış ve ek olarak safra keseside trasesine uygun olarak modellenmiştir. Fantomun çeper bölümünün haricinde model iç bölümünde iki ayrı kanalla dışarı açılan birbirinden bağımsız 2 boşluk yer almaktadır. Boşluklardan biri küre formunda tümör boşluğu diğeri ise parankim boşluğudur. Fantomda, tümöral ve periferik boşluk radyolojik ve nükleer tıp araştırma ve eğitimlerinin sağlanması için tasarlanmış olup içine radyonüklit ve gerekli sıvıların doldurulmasına uygun olarak basılmıştır. Modelimizin nükleer tıp, radyoloji, fizik ve anatomi eğitim ve araştırmalarında aktif olarak kullanılması amaçlanmıştır.

3D PRINTED LIVER PANTOM DESIGN FOR EDUCATIONAL AND RESEARCH PURPOSES

In recent years, three-dimensional printers (3D printers) have been widely used in healthcare. the 3D technology is used to preserve organs in a human body of normal size in their original dimensions. In this study, a phantom with a pathological liver model was designed in a digital environment and 3D printed for use in undergraduate education and multipurpose research. The designed and printed model is suitable for human anatomy, most of the anatomical features of the organ liver are shown on its wall, and the gallbladder is also modeled according to its trace. Apart from the periphery of the phantom, there are 2 independent spaces that open with two separate channels in the inner part of the model. One of the cavities is the spherical tumor cavity, the other is the parenchymal cavity. The tumor and peripheral cavity of the phantom is used for radiological and nuclear medicine research and training and is printed according to the filling with radionuclides and the required fluids. It is envisaged that our model will be actively used in nuclear medicine, radiology, physics and anatomy education and research.

___

  • 1. Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., “A 3D bioprinting system to produce human-scale tissue constructs with structural integrity”. Nature Biotechnology, Vol. 34, Issue 3, Pages 312–319, 2016.
  • 2. Murphy, S.V., Atala, A., “3D bioprinting of tissues and organs”, Nature Biotechnology, Vol. 32, Issue 8, Pages 773–785, 2014.
  • 3. Rybicki, F.J., “Medical 3D printing and the physician-artist.” Lancet, Vol. 391, Issue 10121, Pages 651–652, 2018.
  • 4. Kuang, X., Wu, J., Chen, K., Zhoa, Z., Ding, Z., Hu, F., et al., “Grayscale digital light processing 3D printing for highly functionally graded materials”, Science Advances, Vol. 5, Issue 5, Pages 1-9, 2019.
  • 5. Grigoryan, B., Paulsen, S.J., Corbett, D.C., Sazer, D.C., Fortin, C.L., Zaita, A.J., et al., “Multivascular networks and functional intravascular topologies within biocompatible hydrogels”, Science, Vol. 364, Issue 6439, Pages 458-464, 2019. 6. Liu, X., Tao, J., Liu, J., Xu, X., Zhang, J., Huang, Y., et al., “3D printing enabled customization of functional microgels”, ACS Applied Materials and Interfaces, Vol. 11, Issue 13, Pages 12209–12215, 2019.
  • 7. Ricles, L.M., Coburn, J.C., Di Prima, M., Oh, S.S., “Regulating 3D-printed medical products”, Science Translational Medicine”, Vol. 10, Issue 461, Pages eaan6521, 2018.
  • 8. Hull, C.W., Spence, S.T., Lewis, C.W., Vinson, W., Freed, R.S., “Stereolithographic curl reduction”. US Patent No:5.273.691, 1993.
  • 9. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.TQ., Hui, D., “Additive manufacturing (3D printing): a review of materials, methods, applications and challenges”, Composites Part B: Engineering, Vol. 143, Pages 172–196, 2018.
  • 10. Bernal, P.N., Delrot, P., Loterie, D., Li, Y., Malda, J., Moser, C., et al., “Volumetric bioprinting of complex living-tissue constructs within seconds”, Advanced Materials, Vol. 31, Issue 42, Pages e1904209, 2019.
  • 11. Paul, G.M., Amin, R., Wen, P., Condoor, S., Parkar, N., King, W., et al., “Medical applications for 3D printing: recent developments”, Missouri Medicine, Vol.115, Issue 1, Pages 75–81, 2018.
  • 12. Höhne, C., Schmitter, M., “3D printed teeth for the preclinical education of dental students”, Journal of Dental Education, Vol. 83, Issue 9, Pages 1100–1106, 2019.
  • 13. Pacioni, A., Carbone, M., Freschi, C., Viglialoro, R., Ferrari, V., Ferrari, M., “Patient-specific ultrasound liver phantom: materials and fabrication method”, International Journal of Computer Assisted Radiology and Surgery, Vol. 10, Issue 7, Pages1065–1075, 2015.
  • 14. Yıldırım, G., Yıldırım, S., Çelik, E., “3 boyutlu yazıcılar ve öğretimsel kullanımı: bir içerik analizi”, Bayburt Eğitim Fakültesi Dergisi, Cilt 13, Sayı 25, Sayfa 163-184, 2018.
  • 15. Kim, G.B., Lee, S., Kim, H., Yang, D.H., Kim, Y.H., Kyung, Y.S., et al., “Three-dimensional printing: basic principles and applications in medicine and radiology”, Korean Journal of Radiology, Vol.17, İssue 2, Pages 182–197, 2016. 16. Wang, K., Ho, C-C., Zhang, C., Wang, B., “A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications”, Engineering, Vol. 3, İssue 5, Pages 653–662, 2017. 17. Branham, T., “Phantom testing”, Medical Physics, Vol. 34, Issue 6, Pages 2578-2578, 2007.
  • 18. Di Francia, G., Scafè, R., De Vincentis, G., La Ferrara, V., Iourlaro, G., Nasti, I., et al., “Porous silicon phantoms for high-resolution scintillation imaging”, Nuclear Instrumentss and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 569, Issue 2, Pages 197-200, 2006.
  • 19. SabbirAhmed, A.S.M., Demir, M., Kabasakal, L., Uslu, I., “A Dynamic renal phantom for nuclear medicine studies”, Medical Physics, Vol. 32, Issue 2, Pages 530-538, 2005.
  • 20. Als, C., Bräutigam, P., Mirzaei, S., “Sweet nuclear medicine phantoms for scintigraphic sentinel lymph node detection: a cooking recipe”, European Journal of Nuclear Medicine and Molecular Imaging, Vol. 32, Issue 5, Pages 623-624, 2005.
  • 21. Park, M-A, Zimmerman, R.E., Taberner, A., Kaye, M.W., Moore, S.C., “Design and fabrication of phantoms using stereolithography for small-animal imaging systems”, Molecular Imaging and Biology, Vol. 10, Issue 5, Pages 231- 236, 2008.
  • 22. Solc, J., Vrba, T., Burianova, L., “Tissue-equivalence of 3D-printed plastics for medical phantoms in radiology”, Journal of Instrumentation, Vol. 13, Pages P09018, 2018.
  • 23. Tisch, C., Brencicova, E., Schwendener, N., Lombardo, P., Jackowski, C., Zech, W-D., “Hounsfield unit values of liver pathologies in unenhanced post-mortem computed tomography.” Internatiol Journal Legal Medicine.; Vol. 133, Issue 6, Pages 1861-1867, 2019.
  • 24. Emre, Ş., Yolcu, M.B., Celayir, S., “Üç boyutlu yazıcılar ve çocuk cerrahisi”, Çocuk Cerrahi Dergisi, Cilt 29, Sayı 3, Sayfa 77-82, 2015.
  • 25. Elahinia, M.H., Hashemi, M., Tabesh, M., Bhaduri, S.B., “Manufacturing and processing of NiTi implants: a review”, Progress in Materials Science, Vol. 57, Issue 5, Pages 911–946, 2012.
  • 26. ICRU Report 96, Dosimetry-Guided Radiopharmaceutical Therapy, https://www.icru.org/report/icru-report-96-dosimetry-guided-radiopharmaceutical-therapy/, 2023 27. Leary, M., Kron, T., Keller, C., Franick, R., Lonski, P., Subic, A., et. al., “Additive manufacture of custom radiation dosimetry phantoms: An automated method compatible with commercial polymer 3D printers”, Materials and Design, Vol. 86, Issue 5, Pages 487-499, 2015.
  • 28. Lehmann, J., Stern, R.L., Levy, J., Daly, P.T., Siantar, C.L.H., Goldberg, Z., “Radiation phantom with humanoid shape and adjustable thickness (RPHAT)”, Physics in Medicine and Biology, Vol. 49, Issue 9, Pages 125-129, 2004.
  • 29. Alssabbagh, M, Tajuddin, A.A., Abdulmanap, M., Zainon, R., “Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality”, Radiation Physics and Chemistry, Vol. 135, Pages 106-112, 2017.
  • 30. Ahmad, M.S., Suardi, N., Shukri, A., Mohammad, H., Oglat, A.A., Alarab, A., et al., “Chemical characteristics, motivation and strategies in choice of materials used as liver phantom: a literature review”, Journal of Medical Ultrasound, Vol. 28, Issue 1, Pages 7–16, 2020.
  • 31. Wang, H., Liu, J., Zheng, X., Rong, X., Zheng, X., Peng, H., et al., “Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies”, Scientific Reports, Vol. 5, Pages 10945, 2015.
  • 32. Tam, M.D., Laycock, S.D., Brown, J.R., Jakeways, M., “3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy”, Journal of Endovascular Therapy, Vol. 20, Issue 6, Pages 863-867, 2013.
  • 33. Fu, M., Lin, L., Kong, X., Zhao, W., Tang, L., Li, J., et al., “Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS) insertion: an in vitro study”, Public Library of Science One, Vol.8, Issue 1, Pages e53580, 2013.
  • 34. Li, J., Nie, L., Li, Z., Lin L., Tang, L., Ouyang J., “Maximizing modern distribution of complex anatomical spatial information: 3D reconstruction and rapid prototype production of anatomical corrosion casts of human specimens”, Anatomical Scinces Education, Vol. 5, Issue 6, Pages 330-339, 2012.
  • 35. Zein, N.N., Hanouneh, I.A., Bishop, P.D., Samaan, M., Eghtesad, B., Quintini, C., et al., “Three-dimensional print of a liver for preoperative planning in living donor liver transplantation”, Liver Transplantation, Vol. 19, Issue 12, Pages 1304–1310, 2013.
  • 36. Sheth, R., Balesh, E.R., Zhang, Y.S., Hirsch, J.A., Khademhosseini, A., Oklu R., “Three-dimensional printing: an enabling technology for IR”, Journal of Vascular and Interventional Radiology, Vol. 27, Issue 6, Pages 859–865, 2016.
  • 37. McMenamin, P.G., Quayle, M.R., McHenry, C.R., Adams, J.W., “The production of anatomical teaching resources using three-dimensional (3D) printing technology”, Anatomical Sciences Education, Vol. 7, Issue 6, Pages 479–486, 2014.
  • 38. Krucker, T., Lang, A., Meyer, E.P., “New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics”, Microscopy Research Technique, Vol. 69, Issue 2, Pages138–147, 2006.
  • 39. Schindera, S.T., Torrente, J.C., Ruder, T.D., Hoppe, H., Marin, D., Nelson R.C., et al., “Decreased detection of hypovascular liver tumors with MDCT in obese patients: A phantom study”, AJR American Journal of Roentgenology, Vol. 196, Issue 6, Pages 772–776, 2011.
  • 40. Oglat, A.A., Matjafri, M.Z., Suardi, N., Oqlat, M.A., Abdelrahman, M.A., Oqlat, A.A., “A review of medical Doppler ultrasonography of blood flow in general and especially in common carotid artery”, Journal of Medical Ultrasound, Vol. 26, Issue 1, Pages 3–13, 2018.
  • 41. Özdemir, M., “Ultrasonografi eğitimi için balistik jelatin esaslı fantom geliştirilmesi ve özelliklerinin araştırılması”, Yüksek Lisans Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Sayfa 31-32, 2018.
  • 42. Robinson, A.P., Tipping, J., Cullen, D.M., Hamilton, D., Brown, R., Flynn, A.F., et al., “Organ-specific SPECT activity calibration using 3D printed phantoms for molecular radiotherapy dosimetry”, EJNMMI Physics, Vol. 3, Issue 1, Pages 12–22, 2016.
  • 43. Tran-Gia, J., Schlögl, S., Lassmann, M., “Design andfabrication of kidney phantoms for internal radiation dosimetry using 3d printing technology”, Journal of Nuclear Medicine, Vol. 57, Issue 12, Pages 1998–2005, 2016.
International Journal of 3D Printing Technologies and Digital Industry-Cover
  • ISSN: 2602-3350
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2017
  • Yayıncı: KERİM ÇETİNKAYA