3D TEKNOLOJİSİ İLE YAPI MALZEMESİ ÜRETİMİNDEKİ GELİŞMELER

Gelişen teknoloji ilk çağlardan beri her geçen gün yeni çözümleri de beraberinde getirmektedir. Bu çözümlerin ortak amacı insanların hayatını kolaylaştırmak ve bunu gerçekleştirirken de yaşadığımız evrene en az zararı vermektir. Modern çağın gereği olarak zamanı ve sürdürülebilir yaşam için malzeme üretiminde kullanılan hammadde kaynaklarını etkili kullanmak zorunluluk olmuştur. Hızlı ve ekolojik üretimin yanı sıra maliyeti de düşürecek yeni teknolojiler birçok sektör olduğu gibi yapı sektöründe de öncelikli alanı oluşturmaktadır. Bu teknolojik gelişmelerin en yenilikçisi olan 3D teknolojisi de bunlardan biridir. Alışılagelen yöntemlere göre işçilik, malzeme ve zamandan tasarruf sağlayarak  yapı üretimine farklı bir boyut kazandırmayı hedefleyen 3D teknolojisiyle inşaat sektörü yeniden şekillenmeye başlamıştır. Günümüzde bir yapıyı 3D baskı beton teknolojisiyle  inşa edecek çalışmalar denenmeye başlanmıştır. Ancak yapılan çalışmalar henüz günümüz çok katlı yapılarını inşa etmeye yetecek düzeyde değildir. 3D teknolojisinin inşaat sektöründeki etkisini hızlandırmak için geleneksel üretime bağlı kalınan yapılarda en azından kullanılan yapı malzemelerinin üretimini 3D teknoloji ile  sağlamak gerekmektedir. Bu çalışmada bir yapıyı oluştururken kullanılan tuğla, demir ve beton gibi yapı malzemelerinin 3D teknoloji ile üretim tekniklerinden ve özeliklerinden bahsedilmiştir.

___

  • [1]. Lipson H., Kurman M., "Fabricated: The New World of 3D Printing", John Wiley & Sons, 2013.
  • [2]. Taylor, M., Wamuziri, S., Smith, I. , “Automated construction in Japan”, Proceedings of the Institution of Civil - Civil Engineering, Vol. 156 No. 1, pp. 34-41, 2003.
  • [3]. Wakisaka, T., Furuya, N., Inoue, Y. and Shiokawa, T. , “Automated construction system for high rise reinforced concrete buildings”, Automation in Construction, Vol. 9 No. 3, pp. 229-250, 2000.
  • [4]. Jolin M., Burns D., Bissonnette B., Gagnon F., Bolduc L.S., "Understanding the pumpability of concrete", in Proceedings Shotcrete for Underground Support XI, Engineering Conferences International, 2009.
  • [5]. Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T., “Mix design and fresh properties for high-performance printing concrete” Mater. Struct., 45 (8) pp. 1221-1232, 2012.
  • [6]. Le T.T., Austin S.A., Lim S., Buswell R.A. Gibb A.G.F., Thorpe T., “Hardened properties of high-performance printing concrete” Cem. Concr. Res., 42 (3) , pp. 558-566, 2012.
  • [7]. Malaeb, Z., Hachen H., Tourbah, A., Maalouf, T., Zarwi, N.E., Hamzeh, F., 3D concrete printing: Machine and mix design, International Journal of Civil Engineering and Technology 6., 14–22, 2015.
  • [8]. Gosselin C., Duballet R., Roux P., Gaudillière N., Dirrenberger J., Morel P., "Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders" Mater. Des., 100, pp. 102-109, 2016.
  • [9]. Lim, S., Buswell, R., Le, T., Wackrow, R., Austin, S.A., Gibb, A.G.F., Thorpe, T. , Development of a viable concrete printing process”, In proceeding for 28th International Symposium on Automation and Robotics in Construction (ISARC2011), Seoul, pp. 665-670, 2011.
  • [10]. Mechtcherine, V., Nerella, V.N. and Kasten, K., "Testing pumpability of concrete using sliding pipe rheometer", Construction and Building Materials, Vol. 53, pp. 312-323, 2014.
  • [11]. Kazemian, A., Yuan, X., Cochran, E. and Khoshnevis, B., "Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture", Construction and Building Materials, Vol. 145, pp. 639-647. 2017.[12]. Le, T.T., Austin, S.A., Lim, A., Buswell, R.A., Law, R., Gibb, A.G.F., Thorpe, TT., Hardened properties of high-performance printing concrete., Cement and Concrete Research, Vol. 42 No. 3, pp. 558-566, 2012.
  • [13]. Gosselin C., Duballet R., Roux Ph., Gaudillière N., Dirrenberger J., Morelad Ph., "Large scale 3D printing of ultra-high performance concrete a new processing route for architects and builders", Materials Design., vol. 100, pp 102-109, 2016.
  • [14]. Kim, Y.Y., Kong, H.J. and Li, V.C., "Design of engineered cementitious composite suitable for wet-mixture shotcreting", ACI Materials Journal, Vol. 100, No. 6, pp. 511-518, 2003.
  • [15]. Khoshnevis B., Hwang D. , Yao K.-T. , Yeh Z., "Mega-scale fabrication by contour crafting", Int. J. Ind. Syst. Eng., 1., pp. 301-320, 2006.
  • [16]. Jordan M.M., Sanfeliu T., Fuente C., "Firing transformations of tertiary clays used in the manufacturing of ceramic tile bodies", Appl. Clay Sci., 20 (1–2 , pp. 87-95, 2001.
  • [17]. McBurney, W.J., "The effect of strength of brick on compressive strength of masonary Process" ASTM Part (II), p. 28., 1970.
  • [18]. Jenny, S., Miller,M., Cassab, N., and Lucia, A., “PolyBrick: Variegated Additive Ceramic Component Manufacturing (ACCM)”., 3D Printing and Additive Manufacturing 1 (2)., 2014.
  • [19]. Aubert, J. E., Maillard, P., Morel, J-C. & Al Rafii, M., “Towards a simple compressive strength test for earth bricks”, In : Materials and Structures. 46, 5, p. 1641-1654., 2016.
  • [20]. Deckers J., Vleugels J, Kruth JP., "Additive Manufacturing of Ceramics: A Review", J. Ceram. Sci. Technol. , 5, pp. 245-260, 2014.