3B YAZICILAR İÇİN CAM FİBER KATKILI KOMPOZİT FİLAMENT ÜRETİMİ VE MEKANİK ÖZELLİKLERİ

3B yazıcıların hızlı prototipleme ve özel üretim alanlarında kullanımı hızla artmaktadır. En yaygın kullanılan 3B yazıcı teknolojisi olan eriyik biriktirme yönteminde (FDM), polilaktik asit (PLA) malzeme yaygın olarak tercih edilmektedir. 3D yazıcı baskılarının prototip veya model üretiminin ötesinde kullanılabilir parça üretiminde kullanılabilmesi için kullanılan filamentlerin mekanik özelliklerinin de geliştirilmesi gerekli olmuştur. Bu amaçla takviyeli kompozit filamentlerin geliştirilmesi önemlidir. Bu çalışmada ana amaç cam lifi takviyeli kompozit PLA filament üreterek, özellikle eğilme ve darbe direnci daha yüksek, kullanılabilir parçaların 3B yazıcı ile üretilebilmesine olanak sağlamaktır. Bu amaçla PLA termoplastik malzemeye %5, %10 ve %15 oranlarında cam lifi (CL) katkısı yapılarak çift vidalı ekstrüderde kompozit granül elde edilmiş ve bu granüllerden de 1,75 mm çapında 3B yazıcı filamenti üretilmiştir. Elde edilen kompozit filament kullanılarak 3B yazıcıda yazdırılan parçaların çekme dayanımı (ASTM D638), eğilme dayanımı (ASTM D790) ve darbe direnci (ASTM D6110) değerleri belirlenerek saf PLA’dan üretilen örneklerin değerleriyle karşılaştırılmıştır. 3B yazıcıda parça üretim sürecinde yazdırma parametrelerinin mekanik özelliklere etkisinin belirlenmesi amacıyla da, %10, %50 ve %90 olmak üzere üç farklı doluluk oranı; rectilinear, grid ve honeycomb yazdırma geometrileri ile 190°C ve 210°C yazdırma esnasında ekstrüder sıcaklığı parametreleri kullanılarak deney örnekleri hazırlanmıştır. PLA malzemeye CL katkısı mekanik özellikleri etkilemiş, %5 CLT katkısı ile çekme dayanımında %28, eğilme dayanımında %24 artış; %10 CL katkısı ile de darbe direncinde %8,6 artış elde edilmiştir. CL katkı oranının %15 olması durumunda ise mekanik dirençlerde azalma meydana gelmiştir. Yazdırma parametrelerinden doluluk oranı ile mekanik özellikler arasında doğrusal bir ilişki olduğu ancak yazdırma geometrisi ve sıcaklığının önemli bir etkisinin olmadığı tespit edilmiştir.

MANUFACTURING AND MECHANICAL PROPERTIES OF A GLASS FIBER REINFORCED COMPOSITE FILAMENT FOR 3D PRINTERS

The use of 3D printers in rapid prototyping and specialty manufacturing areas is increasing rapidly. In the melt deposition method (FDM), which is the most widely used 3D printer technology, polylactic acid (PLA) material is widely preferred. In order for 3D printing to be used in the production of usable parts beyond prototype or model production, it was necessary to improve the mechanical properties of the filaments used. For this purpose, it is important to develop reinforced composite filaments. In this study, the main purpose was to produce glass fiber reinforced PLA composite filament, which has particularly higher bending and impact resistance and to allow producing parts which can be used as a functional part by using a 3D printer. In the study, to produce composite granule, glass fiber powder (GF) were added by 5%, 10% and 15% to a thermoplastic PLA by using a twin-screw extruder. With these granules, 1,75 mm filament was extruded by using single screw extruder. In order to determine the mechanical properties of the 3D printed specimens, tensile test (ASTM D638), flexural test (ASTMD790) and impact strength (ASTM D6110) test performed. To determine the effect of the printing parameters on the mechanical properties of the printed specimens, three infill geometries (Grid, Rectilinear, Full honeycomb), three infill rate (10%, 50%, 90%) and two nozzle temperatures (190°C and 210°C) were used. Addition of GF to the PLA affected the mechanical properties of the printed parts. Adding 5% GF resulted in a 28% increase in tensile strength and a 24% increase in flexural strength. Adding 10% GF led an 8,6 % increase in Charpy impact strength. It was determined that mechanical properties decrease when the addition ratio of GFP increases to 15%. It was also determined that there was a direct proportion between infill rate and mechanical properties, but neither infill geometry nor nozzle temperature affected the mechanical properties, significantly.

___

  • 1. Credi, C., Fiorese, A., Tironi, M., Bernasconi, R., Magagnin, L., Levi, M., and Turri, S., “3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers”, ACS Applied Materials & Interfaces, Vol. 8, Issue 39, Pages 26332-26342, 2016.
  • 2. Lee, J. S., Hong, J. M., Jung, J. W., Shim, J. H., Oh, J. H., and Cho, D. W., “3D printing of composite tissue with complex shape applied to ear regeneration”, Biofabrication, Vol. 6, Issue 2, 024103, Pages 1-12, 2014.
  • 3. Liu, L., Lin, M., Xu, Z., and Lin, M., “Polylactic acid-based wood-plastic 3D printing composite and its properties,” BioResources, Vol. 14, Issue 4, 8484–8498, 2019.
  • 4. Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M., “Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites:A comparative study. Composites Science and Technology, Vol. 66, Issue 11–12, Pages 1813–1824, 2006. 5. Lin, L., Deng, C., Lin, G., & Wang, Y., “Mechanical Properties, Heat Resistance and Flame Retardancy of Glass Fiber-Reinforced PLA-PC Alloys Based on Aluminum Hypophosphite”, Polymer-Plastics Technology and Engineering, Vol. 53, Issue, 6, Pages 613–625, 2014.
  • 6. Lu, X., Tang, L., Wang, L. L., Zhao, J. Q., Li, D. D., Wu, Z. M., & Xiao, P., “Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites”, Polymer Testing, Vol. 54, Pages 90–97, 2016.
  • 7. Jaszkiewicz, A., Bledzki, A. K., & Franciszczak, P., “Improving the mechanical performance of PLA composites with natural, man-made cellulose and glass fibers--a comparison to PP counterparts”, Polimery, Vol 58, Issue 6, Pages 435-442, 2013.
  • 8. Zhong, W., Li, F., Zhang, Z., Song, L. and Li, Z., “Short fiber reinforced composites for fused deposition modeling”, Materials Science and Engineering A, Vol. 301, Pages 125–130, 2001.
  • 9. Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV., “Nanofiber-reinforced polymers prepared by fused deposition modeling”, Journal of Applied Polymer Science, Vol. 89, Issue 11, Pages 3081-3090, 2003.
  • 10. Perez, A.R.T., Roberson D.A. and Wicker, R.B., “Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials”, Journal of Failure Analysis and Prevention, Vol. 14, Issue 3, Pages 343–353, 2014.
  • 11. Namiki, M., Ueda, M., Todoroki, A., Hirano, Y. ve Matsuzaki, R. “3D Printing of Continuous Fibre Reinforced Plastic”, Proceedings of the Society of the Advancement of Material and Process Engineering, Seattle, 2-5 June 2014.
  • 12. Weng, Z., Wang, J., Senthil, T., & Wu, L. “Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing”, Materials & Design, Vol. 102, Pages 276–283, 2016.
  • 13. Varsavaş, S. D. (2017). “Effects of glass fiber content, 3D-printing and weathering on the performance of polylactide””, Yüksek Lisans Tezi, [Cam elyaf miktarının, 3D-yazıcı ile şekillendirmenin ve atmosferik yaşlandırmanın polilaktitin performansına etkileri] [Thesis in English], Middle East Technical University, Ankara, 2017.
  • 14. ASTM Standart D638, “Standart test methods for tensile properties of plastics”, ASTM International, West Conshohocken, PA, 2010.
  • 15. ASTM Standard D790, "Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials," ASTM International, West Conshohocken, PA, 2010.
  • 16. ASTM Standart D6110, “Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics”, ASTM international, West Conshohocken, PA, 2004. 17. Khan, B.A., Na, H., Chevali, V., Warner, P., Zhu, J., Wang, H., “Glycidyl methacrylate-compatibilized poly(lactic acid)/hemp hurd biocomposites: Processing, crystallization, and thermo-mechanical response”, J. Mater. Sci. Technology, Vol. 34, Pages 387–397, 2018.
  • 18. Turner Brian, N., “A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness”, Rapid Prototyp. J., Vol. 21, Pages 250–261, 2015.
  • 19. Rahimizadeh, A., Kalman, J., Henri, R., Fayazbakhsh, K., Lessard, L., “Recycled Glass Fiber Composites from Wind Turbine Waste for 3D Printing Feedstock: Effects of Fiber Content and Interface on Mechanical Performance”, Materials, Vol.12, Issue 23, Number 3929, Pages 1-12, 2019.
  • 20. Carneiro, O., Silva, A., & Gomes, R., “Fused deposition modeling with polypropylene”, Materials & Design, Vol.83, Pages 768-776, 2015.
  • 21. Zuo, Y., Wu, Y., Gu, J.,Zhang, Y., “Effect of fiber dosage on properties of glass fiber reinforced starch / polylactic acid composites”, Journal of Functional Materials, Vol. 46, Issue 21, Pages 21148-21152, 2015.
  • 22. Chen, K., Yu, L., Cui, Y., Jia, M., & Pan, K., “Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites”, Thin-Walled Structures, Vol. 164, No:107717, Pages 1-9, 2021.
  • 23. Yu, L., Chen, K., Xue, P., Cui, Y., & Jia, M., “Impregnation modeling and preparation optimization of continuous glass fiber reinforced polylactic acid filament for 3D printing”, Polymer Composites, Vol. 42, Isuue 11, Pages 5731-5742, 2021.
  • 24. Li, X., Ni, Z., Bai1, S., Lou, B., “Preparation and Mechanical Properties of Fiber Reinforced PLA for 3D Printing Materials”, IOP Conference Series: Materials Science and Engineering, Volume 322, Issue 2, No:022012, Pages 1-12, 2018.