On the Generalized of p-harmonic Maps

In this paper, we extend the definition of p-harmonic and p-biharmonic maps between Riemannian manifolds. We present some new properties for the generalized stable p-harmonic maps.

___

  • [1] Baird, P., Wood, J. C.: Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003).
  • [2] Baird, P., Gudmundsson, S.: p-Harmonic maps and minimal submanifolds. Math. Ann. 294, 611-624 (1992).
  • [3] Bojarski, B., Iwaniec, T.: p-Harmonic equation and quasiregular mappings. Banach Center Publ. 19 (1), 25-38 (1987).
  • [4] Cheung, L-F., Leung, P-F.: Some results on stable p-harmonic maps. Glasgow Math. J. 36, 77-80 (1994).
  • [5] Eells, J., Sampson, J. H.:Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964).
  • [6] Fardoun, A.: On equivariant p-harmonic maps. Ann. Inst. Henri. Poincare. 15, 25-72 (1998).
  • [7] Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7 (4), 389-402 (1986).
  • [8] Mohammed Cherif, A.: On the p-harmonic and p-biharmonic maps. J. Geom. 109 (41), (2018).
  • [9] Nagano, T., Sumi M.: Stability of p-harmonic maps. Tokyo J. Math. 15 (2), 475-482 (1992).
  • [10] Xin Y.: Geometry of harmonic maps. Fudan University (1996).