All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds

In this paper we show that Dehn surgeries on the oriented components of the Whitehead link yield tetrahedron manifolds of Heegaard genus $\le 2$. As a consequence, the eight homogeneous Thurston 3-geometries are realized by tetrahedron manifolds of Heegaard genus $\le 2$. The proof is based on techniques of Combinatorial Group Theory, and geometric presentations of manifold fundamental groups.

___

  • [1] M. Aschenbrenner, S. Friedl and H. Wilton, Decision problems for 3-manifolds and their fundamental groups, Geometry & Topology Monographs 19 (2015), 201-236.
  • [2] M. Brittenham and Y.Q. Wu, The classification of exceptional Dehnsurgeries on 2-bridge knots, Commun. Analysis Geom. 9 (1) (2001),97-113.
  • [3] A. Cavicchioli, E. Molnár and F. Spaggiari, Some tetrahedron manifolds with Sol geometry and related groups, Journal of Geometry 105 (2014), 601-614.
  • [4] A. Cavicchioli and F. Spaggiari, Tetrahedron manifold series of Heegaard genus two with knot presentation and Dehn surgery, Acta Math. Hungarica 131 (4) (2011), 307-322.
  • [5] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Topology of compact space forms from Platonic solids I, Topology and its Appl. 156 (2009), 812- 822.
  • [6] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Dehn surgeries on some classical links, Proceed. Edinburgh Math. Soc. 54 (2011), 33-45.
  • [7] A.W.M. Dress, D.H. Huson and E. Molnár, The classification of face-transitive periodic three-dimensional tilings, Acta Crystallogr. A 49(1993), 806-817.
  • [8] D.L. Johnson, Presentations of Groups, London Math. Soc. Stud. Texts, vol. 15, Cambridge Univ. Press, Cambridge, 1990.
  • [9] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Springer- Verlag, Berlin-Heidelberg-New York, 1976.
  • [10] B. Martelli and C. Petronio, Dehn Filling of the "magic " 3-manifold, Commun. in Analysis and Geom. 14 (5) (2006), 969-1026.
  • [11] A.D. Mednykh and A. Yu. Vesnin, On Heegaard genus of three-dimensional hyperbolic manifolds of small volume, Sb. Math. J. 37 (5) (1996), 893- 897.
  • [12] A.D. Mednykh and A. Yu. Vesnin, Covering properties of small volume hyperbolic 3-manifolds, J. Knot Theory Ram. 7 (3) (1998), 381-392.
  • [13] E. Molnár, Tetrahedron manifolds and space forms, Note Mat. 10 (1990), 335-346.
  • [14] E. Molnár, Polyhedron complexes with simply transitive group actions and their realizations, Acta Math. Hung. 59 (1-2) (1992), 175-216.
  • [15] E. Molnár, On non-Euclidean crystallography, some football manifolds, Structural Chemistry 23 (2012), 1057-1069.
  • [16] E. Molnár and J. Szirmai, Symmetries in the 8 homogeneous 3-geometries, Symmetry: Culture and Science 21 (1-3) (2010), 87-117.
  • [17] E. Molnár and J. Szirmai, Hyperbolic space forms with crystallographic applications and visualizations, In: International Conference on Geom- etry and Graphics, Springer Verlag, Cham (2018), pp. 320-337.
  • [18] J. M. Montesinos, Classical Tesselations and Three-Manifolds, Universitext, Springer-Verlag, Berlin, 1987.
  • [19] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38(1971), 737-745.
  • [20] G.D. Mostow, Strong rigidity of locally symmetric spaces, Princeton Univ. Press, Princeton, N.Y., 1973.
  • [21] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973), 255-286.
  • [22] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
  • [23] J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933), 88-111.
  • [24] F. Spaggiari, On a theorem of L. Moser, Boll. U.M.I. 7-A (7) (1993), 421-429.
  • [25] F. Spaggiari, The combinatorics of some tetrahedron manifolds, Discrete Math. 300 (2005), 163-179.