A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature
In a visionary short paper published in 1855, Ossian Bonnet derived a theorem relating prescribed
___
- [1] Bonnet, Ossian: Sur quelque propriétés des lignes géodésiques, Comptes rendus de l’Academie des Sciences, 11 (1855), 1311–1313.
- [2] Calabi, Eugenio: On Ricci curvatures and geodesics, Duke Math. J., 34 (1967), 667–676.
- [3] Casorati, Felice, Mesure de la courbure des surfaces suivant l’idée commune. Ses rapports avec les mesures de courbure gaussienne et
moyenne, Acta Math. 14 (1) (1890), 95–110.
- [4] Chen, Bang-Yen, Geometry of submanifolds, M. Dekker, New York, 1973.
- [5] Chen, Bang-Yen, Geometry of submanifolds and its applications, Science University of Tokyo, 1981.
- [6] Chen, Bang-Yen, Pseudo-Riemannian submanifolds, -invariants and Applications, World Scientific, 2011.
- [7] doCarmo, Manfredo P., Riemannian Geometry, Birkhäuser, 1992.
- [8] Galloway, Gregory J., A Generalization of Myers Theorem and an application to relativistic cosmology, J. Diff. Geom., 14 (1979), 105–116.
- [9] Myers, S. B., Riemmannian manifolds with positive curvature, Duke Math. J., vol. 8 (1941), 401–404.