Bundle of Frames and Sprays for Fréchet Manifolds

___

  • [1] Aghasi, M., Bahari, A.R., Dodson, C.T.J., Galanis, G.N. and Suri, A., Second order structures for sprays and connections on Fréchet manifolds. http://arxiv.org/abs/0810.5261v1.
  • [2] Aghasi,Mand Suri, A., Splitting theorems for the double tangent bundles of Fréchet manifolds. Balkan J. Geom. Appl. 15 (2010), no. 2, 1-13.
  • [3] Antonelli, P.L., Ingarden, R.S. and Matsumoto, M.S., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology. Kluwer, Dordrecht, 1993.
  • [4] Ashtekar, A., and Isham, C.J., Representations of the holonomy algebras of gravity and non-Abelian gauge theories. Classical Quantum Gravity, 9 (1992), 1433-1467.
  • [5] Ashtekar, A. and Lewandowski, J., Differential geometry on the space of connections via graphs and projective limits. J. Geom. Phys., 17 (1995), 191-230.
  • [6] Bourbaki, N., Varietés differentielles et analytiques. Fascisule de résultats 1-7, Herman, Paris, 1967.
  • [7] Dodson, C.T.J. and Galanis, G.N., Bundles of acceleration on Banach manifolds. World Congress of Nonlinear Analysis, June 30 July 7, Orlando, 2004.
  • [8] Dodson, C.T.J., Galanis, G.N., Vassiliou, E., A generalized second order frame bundle for Fréchet manifolds. J. Geom. Phys. 55, (2005), no. 3, 291-305.
  • [9] Eliasson, H.I., Geometry of manifolds of maps. J. Diff. Geom. 1 (1967), pp. 169-194.
  • [10] Galanis, G.N., Differential and Geometric Structure for the Tangent Bundle of a Projective Limit Manifold. Rendiconti del Seminario Matematico di Padova. 112 (2004), 1-12.
  • [11] Galanis, G.N., Projective limits of Banach vector bundles. Portugaliae Mathematica 55 (1998), no. 1, 11-24.
  • [12] Hamilton, R.S., The inverse functions theorem of Nash and Moser. Bull. Amer. Math. Soc., 7 (1982), 65-222.
  • [13] Klingenberg, W., Riemannian geometry. de Gruyter, Berlin, 1982.
  • [14] Lang, S., Fundumentals of differential geometry. Graduate Texts in Mathematics, vol. 191, Springer-Verlag, New York, 1999.
  • [15] Mangiarotti, L., Sardanashvily, G., Connections in classical and quantum field theory. World Scientific, 2000.
  • [16] Kriegl, A. and Michor, P., The convenient setting of global analysis. Mathematical Surveys and Monographs, 53 American Mathematical Society, 1997.
  • [17] Nag, S., The complex analytic theory of the Teichmulller spaces. J. Wiley, New York, 1988.
  • [18] Nag, S. and Sullivan, D., Teichmulller theory and the universal period mapping via quantum calculus and the H1=2 space on the circle. Osaka J. Math. 32 (1995), 1-34.
  • [19] Muller, O., A metric approach to Fréchet geometry. J. Geom. Phys. 58 (2008), no. 11, 1477-1500.
  • [20] Omori, H., Infinite-dimensional Lie groups. Translations of Mathematical Monographs. 158. Berlin: American Mathematical Society, 1997.
  • [21] Saunders, D.J., The geometry of jet bundles. Cambridge Univ. Press, Cambridge, 1989.
  • [22] Suri, A. and Aghasi, M., Connections and second order differential equations on infinite dimensional manifolds Int. Elect. J. Geom. 6 (2013), no. 2, 45-56.
  • [23] Suri, A., Higher order frame bundles. Balkan J. Geom. Appl. 21 (2016), no. 2, 102-117.
  • [24] Suri, A. and Rastegarzadeh, S., Complete Lift of Vector fields and Sprays to T1M. Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550113.
  • [25] Vassiliou, E., Transformations of linear connections. Period. Math. Hungar. 13 (1982), no. 4, 289-308.
  • [26] Vilms, J., Connections on tangent bundles. J. Diff. Geom. 1 (1967), 235-243.