EIGENVALUES OF BOOLEAN GRAPHS AND PASCAL-TYPE MATRICES

Let R be a commutative ring with 1 6= 0. The zero-divisor graph of R is the (undirected) graph whose vertices consist of the nonzero zero-divisors of R such that two distinct vertices x and y are adjacent if and only if xy = 0. Given an integer k > 1, let Ak be the adjacency matrix of the zero-divisor graph of the finite Boolean ring of order 2k. In this paper, it is proved that the eigenvalues of Ak are completely determined by the eigenvalues given by two (k − 1) × (k − 1) Pascal-type matrices Pk and Qk. Multiplicities are also determined.

___

  • L. Aceto and D. Trigiante, The matrices of Pascal and other greats, Amer. Math. Monthly, 108(3) (2001), 232–245.
  • D.F. Anderson, M.C. Axtell, and J.A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York, (2011), 23–45.
  • D.F Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447.
  • M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
  • I. Beck, Coloring of Commutative Rings, J. Algebra, 116 (1988), 208–226.
  • L. Carlitz, The characteristic polynomial of a certain matrix of binomial coef- ficients, The Fibonacci Quarterly, 3(2) (1965), 81–89.
  • C. Cooper and R.E. Kennedy, Proof of a result by Jarden by generalizing a proof of Carlitz, The Fibonacci Quarterly, 33(4) (1995), 304–310.
  • C. Cooper and R.S. Melham, The eigenvectors of a certain matrix of binomial coefficients, The Fibonacci Quarterly, 38(2) (2000), 123–126.
  • D. Cvetkovi´c, P. Rowlinson and S. Simi´c, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2009.
  • F.R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum, 65 (2002), 206–214.
  • C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2004.
  • W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl., 226/228 (1995), 593–616.
  • J.D. LaGrange, A combinatorial development of Fibonacci and Lucas numbers in graph spectra, preprint.
  • J.D. LaGrange, Boolean rings and reciprocal eigenvalue properties, Linear Al- gebra Appl., 436 (2012), 1863–1871.
  • J.D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Alge- bra, 315 (2007), 600–611.
  • J.D. LaGrange, Spectra of Boolean graphs and certain matrices of binomial coefficients, Int. Electron. J. Algebra, 9 (2011), 78–84.
  • R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra, 30(2) (2002), 745–750.
  • D. Lu and T. Wu, The zero-divisor graphs which are uniquely determined by neighborhoods, Comm. Algebra, 35 (2007), 3855–3864.
  • A. Mohammadian, On zero-divisor graphs of Boolean rings, Pacific J. Math., 251 (2011), 375–383.
  • S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra, 30 (2002), 3533–3558. John D. LaGrange
  • Division of Natural and Behavioral Sciences
  • Lindsey Wilson College
  • Columbia, Kentucky 42728, USA
  • e-mail: lagrangej@lindsey.edu