COMPLETELY PRIME SUBMODULES

We generalize completely prime ideals in rings to submodules in modules. The notion of multiplicative systems of rings is generalized to modules. Let N be a submodule of a left R-module M. Define co.√N := {m ∈ M : every multiplicative system containing m meets N}. It is shown that co.√N is equal to the intersection of all completely prime submodules of M containing N, βco(N). We call βco(M) = co.√0 the completely prime radical of M. If R is a commutative ring, βco(M) = β(M) where β(M) denotes the prime radical of M. βco is a complete Hoehnke radical which is neither hereditary nor idempotent and hence not a Kurosh-Amistur radical. The torsion theory induced by βco is discussed. The module radical βco(RR) and the ring radical βco(R) are compared. We show that the class of all completely prime modules, RM for which RM 6= 0 is special.

___

  • V. A. Andrunakievich and Ju. M. Rjabuhin, Special modules and special rad- icals, Soviet Math. Dokl, 3 (1962), 1790–1793. (Russian original:Dokl. Akad. Nauk SSSR., 14 (1962), 1274–1277).
  • A. Azizi, On prime and weakly prime submodules, Vietnam J. Math., 36 (2008), –325.
  • M. Behboodi, A generalization of Baer’s lower nilradical for modules, J. Alge- bra Appl., 6 (2007), 337–353.
  • M. Behboodi and H. Koohy, Weakly prime modules, Vietnam J. Math, 32 (2004), 303–317.
  • M. Behboodi and H. Shojaee, On chains of classical prime submodules, Bull. Iranian Math. Soc., 36 (2010), 149–166.
  • H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363–368.
  • L. Bican, T. Kepka and P. Nemec, Rings, Modules and Preradicals, Lecture notes in pure and applied mathematics, no.75, Marcel Dekker Inc., New York, J. Dauns, Prime modules, Reine Angew. Math., 298 (1978), 156–181.
  • B. de la Rosa and S. Veldsman, A relationship between ring radicals and module radicals, Quaest. Math., 17 (1994), 453–467.
  • B. J. Gardner and R. Wiegandt, Radical Theory for Associative Rings, New York: Marcel Dekker, 2004.
  • N. J. Groenewald and D. Ssevviiri, Classical completely prime submodules, submitted. N. J. Groenewald and D. Ssevviiri, Kothe’s upper nil radical for modules, Acta Math. Hungar., accepted. J. Lambek, On the presentation of modules by sheaves of factor modules, Canad. Math. Bull., 14 (1971), 359–368.
  • T. K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebra and Abelian group, Lectures in Pure and Appl Math., 236 (2004), 365–377.
  • R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25 (1997), 79–103.
  • W. K. Nicholson and J. F. Watters, The strongly prime radical, Proc. Amer. Math. Soc., 76 (1979), 235–240.
  • B. Stenstr¨om, Rings of Quotients, Springer-Verlag, Berlin, 1975. A. A. Tuganbaev,
  • Multiplication modules over non-commutative rings, Sbornik: Mathematics, 194 (2003), 1837–1864.
  • S. Veldsman, On a characterization of overnilpotent radical classes of near- rings by N-group, South African J. Sci, 89 (1991), 215–216.
  • N. J. Groenewald, D. Ssevviiri Department of Mathematics and Applied Mathematics Nelson Mandela Metropolitan University Port Elizabeth South Africa e-mails: nico.groenewald@nmmu.ac.za (N. J. Groenewald) david.ssevviiri@nmmu.ac.za (D. Ssevviiri)