An investigation on auxetic feature and its applications

The technology aims to respond to ever-increasing needs day by day is in a progressing development. One of the basic and most important components of technology is material. Nowadays, as an alternative to conventional engineering materials, multi-functional new generation competitive materials are obtained by adding new features to existing materials or developing new materials in order to meet the demands of the present and future. In this respect, the negative Poisson’s ratio (auxetic) materials are one of the most widespread research subjects recently. The auxetic structure and materials, originally found in nature, have been observed to separate from traditional (positive Poisson’s ratio) materials with various mechanical properties, mainly deformation mechanisms, thanks to their unique microstructures. In this study, auxetic feature is investigated and researches for adaptation of the auxetic feature to various science and technology fields are compiled.

___

  • 1. Beer, F.P., Johnston R.E., Dewolf, J.T., Mazurek, D.F., Mechanics of materials, (Editör: Soyuçok, A., Soyuçok, Ö.), Cisimlerin mukavemeti, Literatür Yayıncılık, İstanbul, Türkiye, 2014.
  • 2. Evans, K.E., Nkansah, M.A., Hutchinson, I.J., Rogers, S.C., Molecular network design, Nature, 1991. 353(6340): p. 124.
  • 3. Bhullar, S.K., Three decades of auxetic polymers: a review, De Gruyter e-Polimers, 2015. 15(4): p. 205-215.
  • 4. Alderson, A. A triumph of lateral thought. Chemistry & Industry, 1999. 17: p. 384-391
  • 5. Uzun, M., Negatif Poisson oranına sahip (auxetic) malzemeler ve uygulama alanları, Tekstil ve Mühendis, 2010. 17(77): p. 13-18.
  • 6. Love, A.E.H., A treatise on the mechanical theory of elasticity, Cambridge University Press, Cambridge, 1927.
  • 7. Ledbetter, H., Lei, M., Monocrystal elastic constants of orthotropic YBa2Cu3O7: An estimate, Journal of Materials Research, 1991. 6(11): p. 2253–2255.
  • 8. Milstein, F., Huang, K., Existence of a negative Poisson's ratio in fcc crystals, Physical Review B, 1979. 19(4): p. 2030–2033.
  • 9. Baughman, R.H., Shacklette, J.M., Zakhidov, A.A., Stafstrom S., Negative Poisson's ratio as a common feature of cubic metals, Nature, 1998. 392(6674): p. 362–365.
  • 10. Garber, A.M., Pyrolytic materials for thermal protection systems, Aerospace Engineering, 1963. 22: p. 126-137.
  • 11. Nur, A., Simmons, G., The effect of saturation on velocity in low porosity rocks, Earth and Planetary Science Letters, 1969. 7(2): p. 183-193.
  • 12. Etienne, F.H., Houpert, R., Thermally induced microcracking in granites: characterisation and analysis, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1989. 26(2): p. 125-134.
  • 13. Gunton, D.J., and Saunders G.A., The Young's modulus and Poisson's ratio in arsenic, antimony and bismuth, Journal of Materials Science, 1972. 7(9): p. 1061–1068,
  • 14. Li, Y., The anisotropic behavior of Poisson's ratio, Young's modulus and shear modulus in hexagonal materials, Physica Status Solidi SeriesA, 1976. 38(1): p. 171–175.
  • 15. Yeganeh-Haeri, A., Weidner, D.J., Praise, J.B., Elasticity of α-cristobalite: a silicon dioxide with a negative Poisson’s ratio, Science, 1992. 257(5070): p. 650-652.
  • 16. Williams, J.L., Lewis J.L., Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis, Journal of Biomechanical Engineering, 1982. 104(1): p. 50–56.
  • 17. Lees, C., Vincent, J.F., Hillerton J.E., Poisson’s ratio in skin, Biomedical Materials And Engineering, 1991. 1(1): p. 19-23.
  • 18. Veronda, D.R., Westmann, R.A., Mechanical characterisation of skin finite deformations, Journal of Biomechanics, 1970. 3(1): p. 111–124.
  • 19. Frohlich, L.M., Labarbera, M., Stevens, W.P., Poisson’s ratio of a crossed fibre sheath: the skin of aquatic salamanders, Journal of Zoology London, 1994. 232(2): p. 231-252.
  • 20. Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I., The mechanics of two-dimensional cellular materials, Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1982. 382(1782): p. 25-42.
  • 21. Almgren, R.F., An isotropic three-dimensional structure with Poisson’s ratio= -1, Journal of Elasticity, 1985. 15(4): p. 427-430.
  • 22. Lakes, R., Foam structures with a negative Poisson’s ratio, Science, 1987. 235(4792): p. 1038-1040.
  • 23. Friis, E.A., Lakes, R.S., Park, J.B., Negative Poisson’s ratio polymeric and metallic foams, Journal of Materials Science, 1988. 23(12): p. 4406-4414.
  • 24. Caddock, B.D., Evans, K.E., Microporous materials with negative Poisson’s ratios I. Microstructure and mechanical properties, Journal of Physics D: Applied Physics, 1989. 22(12): p. 1877-1882.
  • 25. Evans, K.E., Caddock, B.D., Microporous materials with negativ ePoisson’s ratios. II. Microstructure and mechanical properties, Journal of Physics D: Applied Physics, 1989. 22(12): p. 1883-1887.
  • 26. Choi, J.B., Lakes, R.S., Nonlinear properties of polymer cellular materials with a negative Poisson's ratio, Journal of Materials Science, 1992.
  • 27(17): p. 4678-4684. 27. Choi, J.B., Lakes, R.S., Non-linear properties of metallic cellular materials with a negative Poisson’s ratio, Journal of Materials Science, 1992. 27(19): p. 5375-5381.
  • 28. Choi, J.B., Lakes, R.S., Nonlinear analysis of the Poisson’s ratio of negative Poisson’s ratio foams, Journal of Composite Materials, 1995. 29(1): p. 113-128.
  • 29. He, C., Liu, P., Griffin, A.C., Toward negative Poisson’s ratio polymers through molecular design, Macromolecules, 1998. 31(9): p. 3145-3147.
  • 30. Larsen, U.D., Sigmund, O., Bouwstra, S., Design and fabrication of compliant mechanisms and material structures with negative Poisson’s ratio, Journal of Microelectromechanical Systems, 1997. 6(2): p. 99-106.
  • 31. Prall, D., Lakes, R.S., Properties of a chiral honeycomb with a Poisson’s ratio of -1, International Journal of Mechanical Science, 1997. 39(3): p. 305-314.
  • 32. Smith, C.W., Grima, J.N., Evans, K.E., A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model, Acta Materialia, 2000. 48(17): p. 4349-4356.
  • 33. Grima, J.N., Evans, K.E., Auxetic behaviour from rotating squares, Journal of Materials Science Letters, 2000. 19(17): p. 1563-1565.
  • 34. Grima, J.N., Manicaro, E., Attard, D., Auxetic behaviour form connected different-sized squares and rectangles,The Royal Society, 2010. 467(2126): p. 439-458.
  • 35. Grima, J.N., Evans, K.E., Auxetic behaviour from rotating triangles, Journal of Materials Science, 2006. 41(10): p. 3193-3196.
  • 36. Tatlıer, M., Berhan, L., Modelling the negative Poisson’s ratio of compressed fused fibre networks, Physica Status Solidi (b), 2009. 246(9): p. 2018-2024.
  • 37. Tatlier, M. S., Aksu, U., Simulation of Auxetic Behavior in Planar Random Steel Fiber Networks. International Journal of Applied Engineering Research, 2017. 12(13): p. 3978-3987.
  • 38. Han, J., Xie, J., Zhang, Z., Yang, D., Si, M., Xue, D., Negative Poisson’s ratios in few-layer orthorhombic arsenic: first-principles calculations, Applied Physics Express, 2015. 8(4): 041801.
  • 39. Jiang, J. W., Park, H. S., Negative poisson’s ratio in single-layer black phosphorus, Nature communications, 2014. 5(4727).
  • 40. Jiang, J. W., Chang, T., Guo, X., Park, H. S., Intrinsic negative Poisson’s ratio for single-layer graphene, Nano letters, 2016. 16(8): p. 5286-5290.
  • 41. Jiang, J. W., Qi, Z., Park, H. S., Rabczuk, T., Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect. Nanotechnology, 2013. 24(43): 435705.
  • 42. Jiang, J. W., Kim, S. Y., Park, H. S., Auxetic nanomaterials: Recent progress and future development, Applied Physics Reviews, 2016. 3(4): 041101.
  • 43. Ho, D. T., Park, S. D., Kwon, S. Y., Park, K., Kim, S. Y., Negative Poisson’s ratios in metal nanoplates. Nature communications, 2014. 5(3255).
  • 44. Ho, D. T., Kwon, S. Y., Kim, S. Y., Metal [100] nanowires with negative Poisson’s ratio. Scientific reports, 2016. 6(27560).
  • 45. Alderson, A., Alderson, K. L., Evans, K. E., Grima, J. N., Williams, M. R., Davies, P. J., Modelling the deformation mechanisms, structure–property relationships and applications of auxetic nanomaterials. physica status solidi (b), 2005. 242(3): p. 499-508.
  • 46. Valente, J., Plum, E., Youngs, I. J., Zheludev, N. I., Nano‐ and Micro‐Auxetic Plasmonic Materials. Advanced Materials, 2016. 28(26):p. 5176-5180.
  • 47. Yang, W., Li, Z.M., Shi, W., Xie, B.H., Yang, M.B., Review on auxetic materials, Journal of Materials Science, 2004. 39(10): p. 3269-3279.
  • 48. Liu,Y., Hu, H., A review on auxetic structures and polymeric materials, Academic Journals, 2010. 5(10): p. 1052-1063.
  • 49. Evans, K.E., Alderson, A., Auxetic materials: functional materials and structures from lateral thinking!, Advanced Materials, 2000. 12(9): p. 617-628.
  • 50. Smith, C.V., Evans, K.E., Lehaman, F., Strain dependent densification during indentation in auxetic foams, Cellular Polymers, 1999. 18(2): p. 79-101.
  • 51. Alderson, K.L., Fitzgerald, A., Evans, K.E., The strain dependent indentation resilience of auxetic microporous polyethylene, Journal of Materials Science, 2000. 35(16): p. 4039-4047.
  • 52. Scarpa, F., Bullough, W.A., Lumley, P., Trends in acoustic properties of iron particle seeded auxetic polyurethane foam, Journal of Mechanical Engineering Science, 2004. 218(2): p. 241-244.
  • 53. Scarpa, F., Yates, J.R., Ciffo, L.G., Patsias, S., Dynamic crushing of auxetic open-cell polyurethane foam, Journal of Mechanical Engineering Science, 2002. 216(12): p. 1153-1156.
  • 54. Howell, B., Prendergast, P., and Hansen, L. Examinatio of acoustic behavior of negative poisson's ratio materials. Applied Acoustics, 1994. 43(2): p. 141-148.
  • 55. Alderson, K. L., Webber, R. S., Mohammed, U. F., Murphy, E., and Evans, K. E., An experimental study of ultrasonic attenuation in microporous polyethylene, Applied Acoustics, 1997. 50(1): p 23-33.
  • 56. Scarpa, F., Giacomin, J., Zhang, Y., Pastorino, P., Mechanical performance of auxetic polyurethane foam for antivibration glove applications. Cellular Polymers, 2005. 24(5):p. 253-268.
  • 57. Azoti, W. L., Koutsawa, Y., Bonfoh, N., Lipinski, P., Belouettar, S., Analytical modeling of multilayered dynamic sandwich composites embedded with auxetic layers, Engineering Structures, 2013. 57: p. 248-253.
  • 58. Ma, Y., Scarpa, F., Zhang, D., Zhu, B., Chen, L., Hong, J., A nonlinear auxetic structural vibration damper with metal rubber particles,2013. Smart Materials and Structures, 22(8): 084012.
  • 59. Lira, C., Scarpa, F., Rajasekaran, R., A gradient cellular core for aeroengine fan blades based on auxetic configurations. Journal of Intelligent Material Systems and Structures, 2011. 22(9):p. 907-917.
  • 60. Hook, P. B., Evans, K. E., Hannington, J. P., Hartmann-Thompson, C., Bunce, T. R. 2006. Patent number: KR20060009826.
  • 61. Sloan, M. R., Wright, J. R., Evans, K. E., The helical auxetic yarn–a novel structure for composites and textiles; geometry, manufacture and mechanical properties. Mechanics of Materials, 2011. 43(9): p. 476-486.
  • 62. Miller, W., Hook, P. B., Smith, C. W., Wang, X., Evans, K. E., The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Composites Science and Technology, 2009. 69(5): p. 651-655.
  • 63. Evans [cited 2018 01 June]; Available from: https://epsrc.ukri.org/files/newsevents/publications/case-studies/2011/expanding-blast-proof-curtain-will-reduce-impact-of-bomb-explosions/
  • 64. Ugbolue, S. C., Kim, Y. K., Warner, S. B., Fan, Q., Yang, C. L., Kyzymchuk, O., Feng, Y., The formation and performance of auxetic textiles. Part I: theoretical and technical considerations. the Journal of the Textile Institute, 2010. 101(7): p. 660-667.
  • 65. Alderson, A., Rasburn, J., Evans, K.E., Grima, J.N., Auxetic polymeric filters display enhanced de- fouling and pressure compensation properties, Membrane Technology, 2001. 2001(137): p. 6-8.
  • 66. Carneiro, V.H., Meireles, J., Puga, H., Auxetic materials-a review, Materials Science-Poland, 2013. 31(4): p.561-571.
  • 67. Underhill, R.S., Defense applications of auxetic materials, DSIAC Journal, 2014. 1(1): p. 6-12.
  • 68. Munib, Z., Ali, M. N., Ansari, U., & Mir, M., Auxetic polymeric bone stent for tubular fractures: design, fabrication and structural analysis. Polymer-Plastics Technology and Engineering, 2015. 54(16): p. 1667-1678.
  • 69. Wang, Z., & Hu, H., Auxetic materials and their potential applications in textiles,. Textile Research Journal, 2014. 84(15), 1600-1611.
  • 70. Lakes, R. S., & Elms, K. Indentability of conventional and negative Poisson's ratio foams. Journal of Composite Materials, 1993. 27(12): p. 1193-1202.
  • 71. Huang, X.; Blackburn, S. Developing a new processing route to manufacture honeycomb ceramics with negative Poisson's ratio. Key Engineering Materials. Trans Tech Publications, 2002. 206: p. 201- 204.
  • 72. Choi, J. B., Lakes, R. S. Fracture toughness of re-entrant foam materials with a negativePoisson's ratio: experiment and analysis. International Journal of fracture, 1996. 80(1): p. 73-83.
  • 73. Scarpa, F., Smith, F. C. Passive and MR fluid-coated auxetic PU foam–mechanical, acoustic, and electromagnetic properties. Journal of intelligent material systems and structures, 2004. 15(12): p. 973-979.
  • 74. Evans, K. E. The design of doubly curved sandwich panels with honeycomb cores. Composite Structures, 1991. 17(2): p. 95-111.
  • 75. Yeganeh-Haeri, A., Weidner, D. J., & Parise, J. B. Elasticity of or-cristobalitez A silicon dioxide with a negative Poisson’s ratio. Science, 1992. 257(31).
  • 76. Tatlıer, M.S., Toward negative Poisson’s ratio composites: Investigation of the auxetic behavior of fibrous networks, Doctor of Philosophy, Toledo, 2009. p. 109