Hydroxyapatite coating processes with EPD method and investigation of mechanical properties of coatings

This paper reports on electrophoretic deposition of hydroxyapatite coatings on 316L stainless steel and Ti6Al4V alloy. Coatings were carried out at 60 sec. deposition time and voltage values of 40, 80, 120, 160 Voltage. Suspension: It was prepared by using Ethanol, Hydroxyapatite, Polyvinyl Alcohol, Sodium dodecyl sulfate, N-N-Dimethylformamide chemicals. The findings and results acquired at the end of the study have been presented and discussed. When the Ca/P values calculated in the study are examined, it was seen that there are values close to the ideal Ca/P ratio (1.67) in all parameters. When the roughness values are examined, it was seen that coatings close to the ideal surface roughness value (1-1.5 µm) are obtained. When the nano indentation test results were evaluated, it was observed that coatings suitable for shell bone implants were obtained.

___

  • 1. Prabakaran, K., Thamaraiselvi, T. V. and Rajeswari, S., Electrochemical evaluation of hydroxyapatite reinforced phosphoric acid treated 316L stainless steel. Trends Biomaterials, 2006. 19: p. 84-87.
  • 2. Aydin, I., Cetinel, H., Pasinli, A. and Yuksel, M., Preparation of hydroxyapatite coating by using citric acid sodium citrate buffer system in the biomimetic procedure. Materials Testing, 2013. 55(10): p. 782-788.
  • 3. He, G., and Hagiwara, M., Ti alloy design strategy for biomedical applications. Materials Science and Engineering: C, 2006. 26(1): p. 14-19.
  • 4. Javidi, M., Javadpour, S., Bahrololoom, M. E. and Ma, J. J. M. S., Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel. Materials Science and Engineering: C, 2008. 28(8): p. 1509-1515.
  • 5. Bogdanoviciene, I., Beganskiene, A., Tonsuaadu, K., Glaser, J., Meyer, H. J. and Kareiva, A., Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. MaterialsResearch Bulletin, 2006. 41(9): p. 1754-1762.
  • 6. Farrokhi-Rad, M.,Electrophoretic deposition of hydroxyapatite nanoparticles: effect of suspension composition on the electrochemical potential difference at deposit/suspensions interface. Materials Research Express, 2018. 5(8): 085005.
  • 7. Iqbal, N., Nazir, R., Asif, A., Chaudhry, A. A., Akram, M., Fan, G. Y. and Hussain, R., Electrophoretic deposition of PVA coated hydroxyapatite on 316L stainless steel. Current Applied Physics, 2012. 12(3): p. 755-759.
  • 8. Tian, Q., Lin, J., Rivera-Castaneda, L., Tsanhani, A., Dunn, Z. S., Rodriguez, A. and Liu, H., Nano-to-submicron hydroxyapatite coatings for magnesium-based bioresorbable implants–deposition, characterization, degradation, mechanical properties, and cytocompatibility. Scientific reports, 2019. 9(1): p. 1-27.
  • 9. Surmenev, R. A., A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surface and Coatings Technology, 2012. 206(8-9): p. 2035-2056.
  • 10. Suchanek, K., Bartkowiak, A., Perzanowski, M., Marszałek, M., Sowa, M. and Simka, W., Electrochemical properties and bioactivity of hydroxyapatite coatings prepared by MEA/EDTA double-regulated hydrothermal synthesi. Electrochimica Acta, 2019. 298: p. 685-693.
  • 11. Miranda, G., Sousa, F., Costa, M. M., Bartolomeu, F., Silva, F. S., and Carvalho, O., Surface design using laser technology for Ti6Al4V-hydroxyapatite implants. Optics & Laser Technology, 2019. 109: p. 488-495.
  • 12. Luo, J., Jia, X., Gu, R., Zhou, P., Huang, Y., Sun, J. and Yan, M., 316 L stainless steel manufactured by selective laser melting and its biocompatibility with or without hydroxyapatite coating. Metals, 2018. 8(7): 548.
  • 13. Marques, A., Miranda, G., Silva, F., Pinto, P., and Carvalho, Ó., Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2021. 109(3): p. 377-393.
  • 14. Zhou, H. and Lee, J., Nanoscale hydroxyapatite particles for bone tissue engineering. Acta biomaterialia, 2011. 7(7): p. 2769-2781.
  • 15. Curcio, M., Rau, J. V., Santagata, A., Teghil, R., Laureti, S. and De Bonis, A., Laser synthesis of iron nanoparticle for Fe doped hydroxyapatite coatings. Materials Chemistry and Physics, 2019. 225: p. 365-370.
  • 16. Zhou, W., Hu, Z., Wang, T., Yang, G., Xi, W., Gan, Y. and Hu, J., Enhanced corrosion resistance and bioactivity of Mg alloy modified by Zn-doped nanowhisker hydroxyapatite coatings. Colloids and Surfaces B: Biointerfaces, 2020. 186: 110710.
  • 17. Kwok, C. T., Wong, P. K., Cheng, F. T. and Man, H. C., Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied surface science, 2009. 255(13-14): p. 6736-6744.
  • 18. Rodrigues Jr, L. F., Tronco, M. C., Escobar, C. F., Rocha, A. S. and Santos, L. A. L., Painting method for hydroxyapatite coating on titanium substrate. Ceramics International, 2019. 45(12): 14806-14815.
  • 19. Asri, R. I. M., Harun, W. S. W., Hassan, M. A., Ghani, S. A. C.and Buyong, Z., A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. Journal of the mechanical behavior of biomedical materials, 2016. 57: p. 95-108.
  • 20. 20-Qi, J., Chen, Z., Han, W., He, D., Yang, Y. and Wang, Q., Effect of deposition parameters and heat-treatment on the microstructure, mechanical and electrochemical properties of hydroxyapatite/titanium coating deposited on Ti6Al4V by RF-magnetron sputtering. Materials Research Express, 2017. 4(9): 096409.
  • 21. Dudek, K. and Goryczka, T., Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy. Ceramics International, 2016. 42(16): p. 19124-19132.
  • 22. Yu, H. N., Hsu, H. C., Wu, S. C., Hsu, C. W., Hsu, S. K. and Ho, W. F., Characterization of nano-scale hydroxyapatite coating synthesized from eggshells through hydrothermal reaction on commercially pure titanium. Coatings, 2020. 10(2): 112.
  • 23. Vilardell, A. M., Cinca, N., Garcia-Giralt, N., Dosta, S., Cano, I. G., Nogués, X. and Guilemany, J. M., In-vitro comparison of hydroxyapatite coatings obtained by cold spray and conventional thermal spray Technologies. Materials Science and Engineering: C, 2020. 107: 110306.
  • 24. Ngo, T. T., Hiromoto, S., Pham, S. T. and Cao, N. Q., Adhesion properties of hydroxyapatite and octacalcium phosphate coating layers to AZ31 alloy formed at various pH values. Surface and Coatings Technology, 2020. 381: 125187.
  • 25. Pawlik, A., Rehman, M. A. U., Nawaz, Q., Bastan, F. E., Sulka, G. D. and Boccaccini, A. R., Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochimica Acta, 2019. 307: p. 465-473.
  • 26. Avcu, E., Baştan, F. E., Abdullah, H. Z., Rehman, M. A. U., Avcu, Y. Y. and Boccaccini, A. R., Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. Progress in Materials Science, 2019, 103: p. 69-108.
  • 27. Drevet, R., Jaber, N. B., Fauré, J., Tara, A., Larbi, A. B. C. and Benhayoune, H., Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surface and Coatings Technology, 2016. 301: p. 94-99.
  • 28. Molaei, A., Lashgaroo, M., and Yousefpour, M., Effects of electrophoretic parameters on chitosan-based nanocomposite coatings. Journal of the Australian Ceramic Society, 2020. 56(1): p. 1-10.
  • 29. Singh, S., Singh, G. and Bala, N., Corrosion behavior and characterization of HA/Fe3O4/CS composite coatings on AZ91 Mg alloy by electrophoretic deposition. Materials Chemistry and Physics, 2019. 237: 121884.
  • 30. Horandghadim, N., Khalil-Allafi, J. and Urgen, M., Influence of tantalum pentoxide secondary phase on surface features and mechanical properties of hydroxyapatite coating on NiTi alloy produced by electrophoretic deposition. Surface and Coatings Technology, 2020. 386: 125458.
  • 31. Boccaccini, A. R., Keim, S., Ma, R., Li, Y. and Zhitomirsky, I., Electrophoretic deposition of biomaterials. Journal of the Royal Society Interface, 2010. 7(5): p. 581-613.
  • 32. Aydın, İ., Bahçepınar, A. İ., Kırman, M., & Çipiloğlu, M. A., HA coating on Ti6Al7Nb alloy using an electrophoretic deposition method and surface properties examination of the resulting coatings. Coatings, 2019. 9(6): 402.
  • 33. Aydin, İ., Bahçepinar, A. İ. and Gül, C., Surface characterization of EPD coating on AZ91 Mg alloy produced by powder metallurgy. Revista de Metalurgia, 2020. 56(3): e176.
  • 34. Urist, M. R., Lietze, A. and Dawson, E., Beta-tricalcium phosphate delivery system for bone morphogenetic protein. Clinical orthopaedics and related research, 1984. 187: p. 277-280.
  • 35. Kumar, R. M., Kuntal, K. K., Singh, S., Gupta, P., Bhushan, B., Gopinath, P. and Lahiri, D., Electrophoretic deposition of hydroxyapatite coating on Mg–3Zn alloy for orthopaedic application. Surface and Coatings Technology, 2016. 287: p. 82-92.
  • 36. Bartmanski, M., Zielinski, A., Majkowska-Marzec, B. and Strugala, G., Effects of solution composition and electrophoretic deposition voltage on various properties of nanohydroxyapatite coatings on the Ti13Zr13Nb alloy. Ceramics International, 2018. 44(16): p. 19236-19246.
  • 37. Wennerberg, A., The importance of surface roughnessfor implant incorporation. International Journal of Machine Tools and Manufacture, 1998. 38 (5-6): p. 657-662.