Üstün/Özel Yeteneklilerde Atomun Yapısı Konusunun Öğretiminde Bütüncül Yaklaşımla Program Farklılaştırma

Bu çalışmanın amacı, bütüncül yaklaşımla program farklılaştırma odaklı bir fen dersinin üstün/özel yetenekli öğrencilerin atomun yapısı konusundaki anlayışlarına etkisini incelemektir. Bu bağlamda, bütüncül yaklaşımın uygulanmasında program farklılaştırma ilkeleri göz önünde tutularak bilimin bilişsel, epistemik ve sosyal yönlerinin vurgulanması esas alınmıştır. Araştırmanın örneklemi, 8. sınıf düzeyinde 10 (On) üstün/özel yetenekli öğrenciden oluşmaktadır. Uygulama haftada 3 saat olmak üzere 8 hafta sürmüştür. Durum çalışması yöntemi kullanılan bu araştırmada görüşme ve yazılı geri bildirim formu gibi çeşitli nitel veri kaynakları kullanılmış ve verilerin analizinde nitel analiz yöntemleri kullanılmıştır. Elde edilen bulgular özel yetenekli öğrencilerin bütüncül yaklaşımla farklılaştırılmış bir fen dersi öğretiminin sonucunda atomun yapısı konusunda makroskobik, mikroskobik ve sembolik boyutları arasında geçiş yapabildikleri ve modelleme yapabildiklerini göstermiştir. Ayrıca teori-kanun-modelin gelişimi ve bilimin doğası anlayışlarında da gelişmeler olduğu görülmüştür.

Curriculum Differentiation with a Holistic Approach in the Teaching of Atomic Structure to Gifted Students

The purpose of this study to examine the effect of a science course focused on curriculum differentiation with holistic approach on gifted students’ understandings about atomic structure. The case study approach was used in this research. The sample of the study consisted of 10 (ten) gifted students. Implementation period lasted 8 weeks for 3 hours each week. The data were collected through open-ended questionnaire, semi-structured interviews and written reflections. The findings have shown that gifted students were able to switch between macroscopic, microscopic, and symbolic dimensions of atomic structure as a result of teaching a differentiated chemistry lesson with a holistic approach. It was also seen that there are advancements

___

  • Abd-El-Khalick, F. (1999). Teaching science with history. The Science Teacher, 66 (9), 18-22.
  • Abd-El-Khalick, F., & Lederman, N.G. (2000). The influence of history of science courses on students' views of nature of science. Journal of Research In Science Teaching, 37(10), 1057-1095.
  • Abd-El-Khalick F. (2002). Rutherford’s enlarged: A content-embedded activity to teach about nature of science, Physics Education, 37(1).
  • American Association for the Advancement of Science (AAAS). (1990). Science for all Americans. New York: Oxford University Press.
  • American Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy. New York: Oxford University Press.
  • Badjanova J., Ilisko, D. (2015). Holistic approach as viewed by the basic school teachers in Latvia. Discourse and Communication for Sustainable Education, (6), 132-140.
  • Bundsgaard, J. S., & Hansen, T. I. (2011). Evaluation of learning materials: A holistic framework, Journal of Learning Design, 4 (4), 31-44.
  • Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices, Portsmouth, NH: Heinemann.
  • CCEA (2006). A report for the Council of Curriculum Examinations and Assessment. Gifted and talented children in (and out of) the classroom. Erişim tarihi: 07.10.2013, http://www.nicurriculum.org.uk/docs/inclusion_and_sen/gifted/gifted_children_060306.pdf
  • Clough, M. P., & Olson, J. K. (2004). The nature of science: Always part of the science story. The Science Teacher, 71 (9), 28-31.
  • Coll, R. K., & Taylor, N. (2001). Alternative conceptions of chemical bonding held by upper secondary and tertiary students. Research in Science and Technological Education, 19, 171–191.
  • Dodge J. (2009). 25 Quick formative assessment for a differentiated classroom. Scholastic Teaching Resources.
  • Duschl, R. (2000). Making the nature of science explicit. In R. Millar, J. Leech, & J. Osborne (Eds.). Improving science education: The contribution of research. Philadelphia: Open University Press.
  • Erdoğan M. N. (2005). İlköğretim 7. sınıf öğrencilerinin atomun yapısı konusundaki başarılarına, kavramsal değişimlerine, bilimsel süreç becerilerine ve fene karşı tutumlarına sorgulayıcı araştırma (ınquiry) yönteminin etkisi. Yayınlanmamış yüksek lisans tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Erdoğan, M. N. (2015). Eğitim programında ve uygulamada farklılaştırma. Ankara: Pegem Akademi.
  • Erdoğan, M. N., & Köseoğlu, F. (2015a). Explicit-reflective instruction of nature of science as embedded within the chemical equilibrium. Eğitimde Kuram ve Uygulama, 11(2), 717-741.
  • Erdoğan M.N. & Köseoğlu F. (2015b). Explicit-reflective teaching nature of science as embedded within the science topic: Interactive historical vignettes technique. Journal of Education and Training Studies, 3 (6), 40-49.
  • Erduran, S., Dagher, Z. (2014). Reconceptualizing the nature of science for science education: Scientific knowledge, practices and other family categories. Dordrecht: Springer.
  • Erduran, S. (2014). A holistic approach to the atom. Educacio Quimica EduQ, 19, pp. 39-42.
  • Haigh, M. & Ward, G. (2000). From Democritus to Rutherford: Developing our understanding of atomic structure. From a paper presented at Scicon 2000, Palmerston North.
  • Johnstone, A. H. (1993). The development of chemistry teaching: a changing response to a changing demand. Journal of Chemical Education, 70(9), 701–705.
  • Jolliff, T. (2007). Chemistry for Gifted and Talented. Royal Society of Chemistry. Erişim Tarihi: 25.10.2015, http://www.rsc.org/learn-chemistry/resource/res00000617/atoms-elements-molecules-compounds-and-mixtures?cmpid=CMP00000638.
  • Kaya, E. & Erduran, S. (2016b). Yeniden Kavramsallaştırılmış “Aile benzerliği yaklaşımı”: Fen eğitiminde bilimin doğasına bütünsel bir bakış açısı. Türk Fen Eğitimi Dergisi, 13(2), 77-90.
  • Khishfe, R., & Abd-El-Khalick, F. (2002). The influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578.
  • Khishfe, R. (2015). A look into students’ retention of acquired nature of science understandings, International Journal of Science Education, 37(10), 1639-1667.
  • Köseoğlu, F.,Tümay H., Üstün U., (2010). Bilimin doğası öğretimi mesleki gelişim paketinin geliştirilmesi ve öğretmen adaylarına uygulanması ile ilgili tartışmalar. Ahi Evran Ün., Kırşehir Eğitim Fak. Dergisi, 11 (4), 129-162.
  • Köseoğlu F., Tümay H. (2013). Bilim eğitiminde yapılandırıcı paradigma. Ankara: Pegem Akademi.
  • Leblebicioglu, G., Metin, D., Capkinoglu, E., Cetin, P. S., Eroglu Dogan and Schwartz R. (2017). Changes in students’ views about nature of scientific inquiry at a science camp. Science & Education, 7-9, 889-917.
  • McBridge, B. (2004). Data-driven instructional methods: "One-strategy-fits-all" doesn't work in real classrooms. T.H.E Journal, 31(11), 38-40.
  • Marzano, R. J., Pickering, D. J., & Pollock, J. E. (2001). Classroom instruction that works (1st ed.). Alexandria, VA: ASCD.
  • Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science, Routledge, New York.
  • Merriam, S. (1998). Qualitative research and case study applications in education. San Francisco, CA: Jossey Bass, Inc.
  • Millar, R., Leach, J., Osborne, J., & Ratcliffe, M. (2000). Evidence-based Practice in Science Education: A New Research Network. Education in Science, (190), 12 - 13.
  • Miller, J. P. (1993). The holistic teacher. Toronto: Canadian Cataloguing in Publication Data.
  • Orion, N. (2003). Teaching global science literacy: a professional development or a professional change. In Mayer, V. (Ed.), Implementing Global Science Literacy. (pp.279-286). Ohio State University.
  • Orion, N. (2007). A Holistic Approach for Science Education for All. Eurasia Journal of Mathematics, Science & Technology Education, 3(2), 111-118.
  • Patel N.V. (2003). A holistic approach to learning and teaching interaction: Factors in the development of critical learners. The International Journal of Educational Management. 7(6/7), 272-284.
  • Rutherford, J., and Ahlgren, A. (1989). Science for All Americans. Washington, DC: American Association for the Advancement of Science, 42(1), 254-266.
  • Sak, U. (2016). EPTS Curriculum Model in the Education of Gifted Students. Anales de psicología, 32, nº 3 (octubre), 683-694.
  • Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5-51.
  • Schwartz, R. S., Lederman, N. G., & Crawford, B. (2004). Developing views about nature of science in authentic contexts: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88(4), 610-645.
  • Shamos, M. H. (1995). The myth of scientific literacy. New Brunswick, NJ: Rutgers University Press.
  • Taber, K. S. (2014). The significance of implicit knowledge in teaching and learning chemistry. Chemistry Education Research and Practice. Doi: 10.1039/C4RP00124A
  • Taber, K. S. (2000) Multiple frameworks: Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22 (4), 399-417.
  • Taber, K. S. (2007). Science education for gifted learners? In K. S. Taber (Ed.), Science Education for Gifted Learners (pp. 1-14). London: Routledge.
  • Tomlinson, C. A., and Kalbfleisch, M. L. (1998). Teach me, teach my brain: A call for differentiated classrooms. Educational Leadership, 56(3), 52-55.
  • Tomlinson, C. A. (2004b). Research evidence for differentiation. School Administrator, 61(7), 30 Tomlinson, C. A. (2004c). Sharing responsibility for differentiating instruction. Roeper Review, 26(4), 188-200.
  • Tomlinson, C. A. & Jarvis, J.M. (2009). Differentiation: Making Curriculum work for all students through responsive planning and Instruction. In J.S. Renzulli, E.J. Gubbins, K.S. McMillen, R.D. Eckert & C.A. Little (Eds.), Systems and Models for Developing Programs for the Gifted and Talented. (2nd Ed: 599-628). Mansfield Center CT: Creative Learning Press.
  • Tümay, H. (2016). Reconsidering learning difficulties and misconceptions in chemistry: Emergence in chemistry and Its implications for chemical education. Chemistry Education Research and Practice, 17(2), (229-245).
  • UNESCO. United Nations Educational, Scientific and Cultural Organization (2012). Learning to be: a holistic and integrated approach to values education for human development: core values and the valuing process for developing innovative practices for values education toward international understanding and a culture of peace. Bangkok: Unesco Asia and Pacific Regional Bureau for Education.
  • Wellington, J. (2000). Educational research, contemporary issues and practical approaches. London: Continuum.
  • Wormeli, R. (2005). Busting myths about differentiated instruction. Principal Leadership, 5 (7), 28-33.
  • Yıldırım, A., & Şimşek, H. (1999). Sosyal bilimlerde nitel arastırma yöntemleri. Ankara: Seçkin Yayınevi.
İnönü Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: İnönü Üniversitesi Eğitim Fakültesi Dekanı