AHŞAP NUMUNELERİN PİROLİZİ İLE SENTEZ GAZI ELDESİNDE NEMİN ETKİSİ

Bu çalışmada belirli nem seviyelerindeki(%5-25) atık ahşap numuneleri laboratuvar ölçekli bir piroliz reaktöründe oksijensiz olarak bozundurularak, katı, sıvı ve gaz son ürünler olan sentez gazı, katran ve çar elde edilmiştir. Piroliz son ürünlerini etkileyen önemli parametrelerden biri olan nem içeriğindeki değişiminin sentez gazı oluşumuna etkisi incelenmiştir. Çalışmada kullanılan ahşap numuneler iki aşamalı kırma işlemine tabi tutularak 0,2mm-10mm boyutlarına kadar küçültülmüştür. Numunelerin piroliz işlemine hazır hale getirilebilmesi için bir ön kurutma işlemi gerekmektedir. Bu işlem için kullanılan kurutma ünitesi ihtiyacı olan enerjiyi piroliz ünitesinin atık ısısından sağlamaktadır. Burada numunelerin verimli kurutulabilmesi için döner yataklı ve dâhili karıştırma fonksiyonu bulunan, 100-120 oC sıcaklık değerlerine ulaşabilen bir kurutucu ünitesi kullanılmıştır. Döner kurutucunun dönme devir hızına değiştirilerek farklı işlem sürelerinde farklı nem oranlarında numuneler elde edilmiştir. Buradan elde edilen üç farklı nem içeriğindeki(%5, %15, %20 ve %25) ahşap numuneler 350-450°C arası sıcaklıkta piroliz edilerek elde edilen sentez gazı oluşumları karşılaştırılmıştır. Piroliz işlemi sonucu ortaya çıkan sentez gazı oluşumları incelendiğinde nem içeriği düşük numunelerden daha yüksek debide gaz çıkışı olduğu belirlenmiştir.

___

  • [1] K. Araus, F. Reyes, and M. Toledo, “Syngas production from wood pellet using filtration combustion of lean natural gas-air mixtures,” Int. J. Hydrogen Energy, vol. 39, no. 15, pp. 7819–7825, 2014.
  • [2] Li S, Xu S, Liu S, Yang C, Lu Q. “Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas”. Fuel Process Technol 2004;85:1201e11.
  • [3] Chen G, Andries J, Spliethoff H, Fang M, van de Enden PJ. “Biomass gasification integrated with pyrolysis in a circulating fluidised bed.” Sol Energy 2004;76:345e9.
  • [4] Qinglan H, Chang W, Dingqiang L, Yao W, Dan L, Guiju L. “Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature.” Int J Hydrogen Energy 2010;35:8884e90.
  • [5] Aasberg-Petersen K, Bak Hansen JH, Christensen TS, Dybkjaer I, Christensen PS, Stub Nielsen C, et al. “Technologies for large-scale gas conversion.” Appl Catal A 2001;221:379e87.
  • [6] Demirbas A. “Combustion characteristics of different biomass fuels.” Prog Energy Combust Sci 2004;30:219e30.
  • [7] Holladay JD, Hu J, King DL, Wang Y. “An overview of hydrogen production technologies.” Catal Today 2009;139:244e60.
  • [8] X. Peng, L.S. Wang, M. Mirzaee, H. Ahmadi, M.J. Esfahani, S. Fremaux “Hydrogen and syngas production by catalytic biomass gasification.” Energy Convers Manage, 135 (2017), pp. 270-273
  • [9] M. Hu, L. Gao, Z. Chen, C. Ma, Y. Zhou, J. Chen, et al.Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust Energy Convers Manage, 111 (2016), pp. 409-416.
  • [10] Alzate-Gaviria, L.M., Sebastian, P.J., Pérez-Hernández, A., Eapen, D., 2007. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. International Journal of Hydrogen Energy 32 (15), 3141–3146.
  • [11] A. Demirbas, “Effect of temperature on pyrolysis products from four nut shells,” J. Anal. Appl. Pyrolysis, vol. 76, no. 1–2, pp. 285–289, 2006.
  • [12] W. Yan, Z. Shuting, Z. Yufeng, X. Hui, D. Na, and C. Guanyi, “Experimental studies on low-temperature pyrolysis of municipal household garbage - Temperature influence on pyrolysis product distribution,” Renew. Energy, vol. 30, no. 7, pp. 1133–1142, 2005.
  • [13] S. Luo, B. Xiao, and L. Xiao, “A novel shredder for municipal solid waste (MSW): Influence of feed moisture on breakage performance,” Bioresour. Technol., vol. 101, no. 15, pp. 6256–6258, 2010.
  • [14] R. K. K. Yuen, G. H. Yeoh, G. de Vahl Davis, and E. Leonardi, “Modelling the pyrolysis of wet wood – I. Three-dimensional formulation and analysis,” Int. J. Heat Mass Transf., vol. 50, no. 21, pp. 4371–4386, 2007.
  • [15] A. Demirbas, “Effect of initial moisture content on the yields of oily products from pyrolysis of biomass.” J. Anal. Appl. Pyrolysis, vol. 71, no. 2, pp. 803–815, 2004.
  • [16] S. Xiong, J. Zhuo, B. Zhang, and Q. Yao, “Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge,” J. Anal. Appl. Pyrolysis, vol. 104, pp. 632–639, 2013.
  • [17] M. M. Hasan, X. S. Wang, D. Mourant, R. Gunawan, C. Yu, X. Hu, S. Kadarwati, M. Gholizadeh, H. Wu, B. Li, L. Zhang, and C. Z. Li, “Grinding pyrolysis of Mallee wood: Effects of pyrolysis conditions on the yields of bio-oil and biochar,” Fuel Process. Technol., vol. 167, pp. 215–220, 2017.
  • [18] T. Wang, R. Zhang, L. Peng, Y. Ai, and Q. Lu, “Pyrolysis characteristic changes of poplar wood during natural decay,” J. Anal. Appl. Pyrolysis, no. September, pp. 0–1, 2017.
  • [19] Z. Sun, B. Xu, A. H. Rony, S. Toan, S. Chen, K. A. M. Gasem, H. Adidharma, M. Fan, and W. Xiang, “Thermogravimetric and kinetics investigation of pine wood pyrolysis catalyzed with alkali-treated CaO/ZSM-5,” Energy Convers. Manag., vol. 146, pp. 182–194, 2017.
  • [20] P. Thy, G. H. Barfod, A. M. Cole, E. L. Brown, B. M. Jenkins, and C. E. Lesher, “Trace metal release during wood pyrolysis,” Fuel, vol. 203, pp. 548–556, 2017.
  • [21] K. Azizi, M. Keshavarz Moraveji, and H. Abedini Najafabadi, “Simultaneous pyrolysis of microalgae C. vulgaris, wood and polymer: The effect of third component addition,” Bioresour. Technol., vol. 247, no. September 2017, pp. 66–72, 2018.
  • [22] M. M. Hasan, X. Hu, R. Gunawan, and C.-Z. Li, “Pyrolysis of large mallee wood particles: Temperature gradients within a pyrolysing particle and effects of moisture content,” Fuel Process. Technol., vol. 158, pp. 163–171, 2017.
  • [23] C. Di Blasi, C. Branca, Temperatures of wood particles in a hot sand bed fluidized by nitrogen, Energy & Fuels 17 (2003) 247–254.
  • [24] X.Wang, S.R.A. Kersten,W. Prins,W.P.M. van Swaaij, Biomass pyrolysis in a fluidized bed reactor. Part 2: experimental validation ofmodel results, Ind. Eng. Chem. Res. 44 (2005) 8786–8795.
  • [25] C. Di Blasi, C. Branca, A. Santoro, E.G.Hernandez, Pyrolytic behaviour and products of some wood varieties, Combust. Flame 124 (2001) 165–177.
  • [26] W.C.R. Chan,M. Kelbon, B. Krieger-Brockett, Single-particle biomass pyrolysis: cor- relations of reaction products with process conditions, Ind. Eng. Chem. Res. 27 (1988) 2261–2275.
  • [27] R. Bilbao, A.Millera,M.B.Murillo, Temperature profiles andweight loss in the thermal decomposition of large spherical wood particles, Ind. Eng. Chem. Res. 32 (1993) 1811–1817.
  • [28] Xiao, G., Chi, Y., Ni, M.J., Zhang, J.Q., Miao, Q., Zhu, W.L., Zheng, J., Tu, H.B., Cen, K.F., 2006. Research on characteristics of wood pyrolysis and gasification in fluidized beds. Acta Energiae Solaris Sinica 27, 639–646 (in Chinese).
  • [29] C. Chen, Y. Jin, and Y. Chi, “Effects of moisture content and CaO on municipal solid waste pyrolysis in a fixed bed reactor,” J. Anal. Appl. Pyrolysis, vol. 110, pp. 108–112, 2014.