Pentacene/n-Si Heteroeklem Aygıtlarının Yapımı ve Karakterizasyonu

Bu çalışmada organik yarıiletken özellik gösteren pentacene malzemesi kullanılarak elde edilen doğrultucu kontakların elektriksel özellikleri incelendi. İlk olarak n-Si bir yüzeyine termal buharlaştırma yöntemi ile Al metali kaplandı ve 450 °C de 10 dakika tavlanarak omik kontak elde edildi. Daha sonra termal buharlaştırma yöntemi ile n-Si yarıiletkeninin diğer yüzeyine Pentacene organik filmi kaplandı. Son olarak elektriksel ölçümler için DC saçtırma yöntemi ile Pentacene üzerine Ni kaplanarak daire şeklinde sekiz farklı kontak elde edildi. Ni/Pentacene/n-Si/Al heteroeklem aygıtlarının oda sıcaklığında ve karanlıkta I-V (Akım Voltaj) ölçümleri yapıldı. TE teorisi kullanılarak yapılan hesaplamalardan elde edilen aygıtların benzer karakteristik özelliklere sahip olduğu görülmüştür. D1 numaralı Ni/Pentacene/n-Si/Al heteroeklem aygıtı 0.83 eV engel yüksekliği ve 1.41 idealite faktörü ile Schottky davranış göstermiştir. Ayrıca Cheung ve Norde fonksiyonları gibi farklı metotlar kullanılarak engel yüksekliği ve idealite faktörü ile beraber D1 numaralı Ni/Pentacene/n-Si/Al heteroeklem aygıtının seri direnç değerleri de (Rs) hesaplanmıştır.

The Fabrication of the Pentacene/n-Si Heterojunction Devices and Characterization

In this study, electrical properties of rectifier contacts obtained by using organic semiconducting pentacene material were investigated. Firstly, Al metal was evaporated on one surface of n-Si wafer for back contact by thermal evaporation and then n-Si was annealed at 450 °C for 10 mininutes. Then, pentacene organic film was deposited on the other surface of n-Si wafer by thermal evaporation. Finally, eight circle Ni contacts with 7.85×10-3 cm-2 area were coated on Pentacene film by sputtering method for the electrical measurements. Current-voltage (I-V) measurements were performed at the room temperature and in dark of Ni/Pentacene/n-Si/Al heterojunction devices.  The basic diode parameters such as ideality factors (n) and the barrier heights (Ω) of Ni/Pentacene/n-Si/Al devices were calculated using forward bias I–V curve. The D1 Ni/Pentacene/n-Si/Al heterojunction device showed Schottky behavior with barrier heights of 0.83 eV and ideality factors of 1.41 using thermionic emission (TE) theory. Other devices have similar characteristics. Furthermore, both parameters and series resistance (Rs) of number D1 Ni/Pentacene/n-Si/Al heterojunction device were calculated using different methods as Cheung and Norde functions.

___

  • Alahmed ZA, Mansou SA, Aydın ME, Yakuphanoglu F, 2013. Hybrid photodiodesbasedon6,13-bis(triisopropylsilylethynyl) pentacene:poly[2-methoxy-5-(2ethyl)hexoxy-phenylenevinylene]/p silicon. Solid State Communications, 163:23-27.
  • Asubay S, Genisel MF, Ocak YS, 2014. Electrical parameters of a DC sputtered Mo/n-type 6H-SiC Schottky barrier diode. Materials Science in Semiconductor Processing, 28, 94–97.
  • Aydoğan Ş, İncekara Ü, Türüt A, 2010. Determination of contact parameters of Au/Carmine/n-Si Schottky device. Thin Solid Films, 518:7156–7160.
  • Aydoğan S, Sağlam M, Türüt A, 2008. Reverse bias capacitance–voltage characteristics of Al/polyaniline/p-Si/Al structure as a function of temperature. Journal of Non-Crystalline Solids, 354: 4991–4995.
  • Brutscher N, Hoheise M, 1988.Schottky diodes with high series resistance: A simple method of determining the barrier heights. Solid-State Electronics, 31:87-89.
  • Çaldıran Z, 2013b. Au/Antrakinon/p-Si/Al Schottky Diyodun Temel Karakteristik Parametrelerinin Sicakliğa Bağli I-V (Akim-Voltaj) ve C-V (Kapasite-Voltaj) Ölçümlerinden Tayin Edilmesi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Çaldıran Z, Aydoğan Ş, Yesildag A, Ekinci D, Kurudirek SV, Türüt A, 2015. Temperature-dependentcurrent–voltagemeasurements of Au/C9H7N/p-Si:Characterization of ametal–organic-semiconductordevice. Materials Science in Semiconductor Processing, 34:58–64.
  • Çaldıran Z, Deniz A.R, Aydoğan Ş, Yesildağ A, Ekinci D, 2013a.The barrier height enhancement of the Au/n-Si/Al Schottky barrier diode by electrochemically formed an organic Anthracene layer on n Si. Superlattices and Microstructures, 56:45–54.
  • Çaldıran Z, Deniz AR, Şahin Y, Metin Ö, Meral K, Aydoğan Ş, 2013c.The electrical characteristics of the Fe3O4/Si junctions. Journal of Alloys and Compounds, 552:437–442.
  • Cheung SK, Cheung NW, 1986. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett., 58:382.
  • Deniz AR, Çaldıran Z, Biber M, Incekara Ü, Aydoğan Ş, 2018. Investigation of electrical properties of Ni/Crystal Violet (C25H30CIN3)/n-Si/Al diode as a function of temperature. Journal of Alloys and Compounds, 763:622-628.
  • Deniz AR, Çaldıran Z, Metin Ö, Meral K, Aydoğan Ş, 2016. The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range. Journal of Colloid and Interface Science, 473:172–181.
  • Hendi AA, Orainy RH, 2014. Rectifying properties of TIPS-pentacene:rhodamine blend organicsemiconductor-on-p-silicon diodes. Synthetic Metals, 193:31–34.
  • Karabulut A, Orak İ, Türüt A, 2018a. The photovoltaic impact of atomic layer deposited TiO2 interfacial layer on Si-based photodiodes. Solid State Electronics, 144:39–48.
  • Karabulut A, Orak İ, Canlı S, Yıldırım N, Türüt A, 2018b. Temperature-Dependent Electrical Characteristics of Alq3/p-Si Heterojunction. Physica B: Condensed Matter, 550, 68-74.
  • Karataş, Ş. and Türüt, A., 2006. The determination of electronic and interface state density distributions of Au/n-type GaAs Schottky barrier diodes. Physica B, 381, 199-203.
  • Kocyigit A, Karteri İ, Orak I, Uruş S, Çaylar M, 2018.The structural and electrical characterization of Al/GO-SiO2/p-Si photodiode. Physica E:Low-dimensional Systems and Nanostructures, 103:452–458.
  • Mönch W, 1988. Phys. Rev. B, 37:7129–7132.
  • Mott NF, Gurney RW, 1940. Electronic Processes in Ionic Crystals, Dover Public., Inc., New York.
  • Neamen D.A, 1992. Semiconductors Physics and Devices, R. R. Donnelley & Sons Company, Sydney. Orak İ, Koçyiğit A, 2016. The Electrical Characterization Effect of Insulator Layer between Semiconductor and Metal. Iğdır Üni. Fen Bilimleri Enst. Der./Iğdır Univ. J. Inst. Sci. & Tech. 6(3): 57-67.
  • Orak İ, Koçyiğit A, Karataş Ş, 2018. The Analysis of the Electrical and Photovoltaic Properties of Cr/p-Si Structures Using Current-Voltage Measurements. Silicon (2018) 10:2109–2116.
  • Oyama N, Takanashi Y, Kaneko S, Momiyama K, Suzuki K, Hirose F, 2011. Pentacene/n-Si heterojunction diodes and photovoltaic devices investigated by I–V and C–V measurements. Microelectronic Engineering, 88:2959–2963.
  • Reddy, V.R., 2014. Electrical properties and conduction mechanism of an organic-modified Au/NiPc/n-InP Schottky barrier diode. Applied Physics A, 116, 1379-1387.
  • Tataroğlu A, Ahmedova C, Barim G, Al-Sehemi A, Karabulut A, Al-Ghamdi A, Farooq WA, Yakuphanoğlu F, 2018. Electronic and optoelectronic properties of Al/coumarin doped Pr2Se3–Tl2Se/p-Si devices. Journal of Materials Science:Materials in Electronics 29(15), pp. 12561-12572.
  • Tung R.T, 2001. Mater. Sci. Eng. Rep R Rep., 35:1–138.
  • Türüt A, Karabulut A, Efeoğlu H, 2017. Electrical characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures over a wide measurement temperature. Journal of Optoelectronics and Advanced Materials, 19(5-6), pp. 424-433.
  • Yilmaz M, Cirak BB, Aydogan S, Grilli ML, Biber M, 2018. Facile electrochemical-assisted synthesis of TiO2 nanotubesand their role in Schottky barrier diode applications. Superlattices and Microstructures, 113:310-318.
  • Yüksel ÖF, Tuğluoğlu Gülveren NB, Safak H, Kus M, 2013. Electrical properties of Au/perylene-monoimide/p-Si Schottky diode. Journal of Alloys and Compounds, 577:30–36.