Laktoperoksidaz Enziminin Farklı Kaynaklardan Saflaştırılması: Kapsaisin ve Pirogallol’ün İnhibisyon Profili

Peroksidazlar (POD), gıda ve ilaç endüstrisi başta olmak üzere metabolik fonksiyonlar, enzimatik

Lactoperoxidase Enzyme Purified from Different Milk Sources: Inhibition Profile of Capsaicin and Pyrogallol

Peroxidases (POD) have an important use in metabolic functions, enzymatic reactions and clinicaldiagnoses, especially in the food and pharmaceutical industry. Mammalian POD enzymes, Lactoperoxidase (LPO)(hydrogen peroxide oxidoreductase E.C. 1.11.1.7) is localized in milk, saliva and tears, while myeloperoxidase islocalized in leukocytes and platelets. LPO enzyme catalyses the conversion of hypothiocyanate with antibacterialproperties of thiocyanate in the presence of hydrogen peroxide. The purpose of this study was to determine the invitro inhibition effects of capsaicin and pyrogallol on LPO enzyme purified from different milk sources (Bovine,buffalo, sheep and goat). To determine the inhibition effects of capsaicin and pyrogallol on LPO, LPO enzymewas purified from different mammalian milk and then, Lineweaver-Burk graphs were drawn for each inhibitorby measuring enzyme activities; Ki values and inhibition types were determined from these plotted graphs. TheKi values of capsaicin and pyrogallol were found in ranging of 0.0035-36.178 µM. Pyrogallol was shown themost effective inhibitor feature with a non-competitive inhibition type with 0.0035 ± 0.0012 μM Ki value on LPOenzyme purified from sheep milk.

___

  • Adem S, Comakli V, Kuzu M, Demirdag R, 2014. Investigation of the effects of some phenolic compounds on the activities of glucose-6-phosphate dehydrogenase and 6- phosphogluconate dehydrogenase from human erythrocytes. J Biochem Mol Toxicol., 28(11): 510–514.
  • Arnold C, 1881. Einige neue Reactionen der Milch. Archiv der Pharmazie, 219: 41–42.
  • Atamer M, Kocak C, Cimer A, Odabasi S, Tamucay B, Yamaner N, 1999. Some quality characteristics of Kasar cheese manufactured from milk preserved by activation of lactoperoxidase/thiocyanate/hydrogen peroxide (LP) system. Milchwissenschaft, 54: 553–556.
  • Bravo L, 1998. Polyphenols: chemistry, dietarysources, metabolism, and nutritional significance, Nutr. Ver. 56: 317-333.
  • Coutinho H.D.M, Cordeiro L.N, Bringel K.P, 2005. Antibiotic resitance of pathogenic bacteriai solated from the population of Juazeiro do Norte-Ceara, Rev. Bras. Cienc Saúde 9: 127-138.
  • Coutinho H.D.M, Costa J.G.M, Siqueira-Júnior J.P, Lima E.O, 2008. In vitro antistaphylococcal activity of Hyptis martiusii Benth against methicillin resistant Staphylococcus aureus-MRSA strains, Rev. Bras. Farmacogn., 18: 670-675.
  • Davies KJ, 1995. Oxidative stress: the paradox of aerobic life. Biochemical Society Symposium, 61: 1–31.
  • de Wit JN, van Hooydonk ACM, 1996. Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Netherlands Milk & Dairy Journal, 50: 227±244.
  • Demir Y, Beydemir Ş, 2015. Purification, refolding, and characterization of recombinant human paraoxonase-1. Turkish Journal of Chemistry, 39(4): 764-776.
  • Grundh€ofer P, Niemetz R, Schilling G, Gross G.G, 2001. Biosynthesis and subcellular distribution of hydrolyzable tannins, Phytoch 57: 915-927.
  • Gulcin I, Mshvildadze V, Gepdiremen A, Elias R, 2006. Screening of antioxidant and antiradical activity of monodesmosides and crude extract from Leontice smirnowii Tuber. Phytomedicine, 13: 343–351.
  • Haddain MS, Ibrahim SA, Robinson RK, 1996. Preservation of raw milk by activation of the natural lactoperoxidase systems. Food Control, 7: 149–152.
  • Hussain S, Slikker W, Ali SF, 1995. Age related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different region of mouse brain. International Journal of Developmental Neuroscience,13: 811–817.
  • Jacob BM, Monoj NK, Haridas M, 1998. Antibacterial property of goat milk lactoperoxidase. Indian Journal of Experimental Biology, 31: 808.
  • Koksal Z, Usanmaz H, Bayrak S, Ozdemir H, 2017. Improved chromatographic method for purification of lactoperoxidase from different milk sources. Preparative Biochemistry and Biotechnology, 47(2): 129-136.
  • Koksal Z, Alim Z, Beydemir S, Ozdemir H, 2016a. Potent Inhibitory Effects of Some Phenolic Acids on Lactoperoxidase. Journal of biochemical and molecular toxicology, 30(11): 533-538.
  • Koksal Z, Gulcin I, Ozdemir H, 2016. An Important Milk Enzyme: Lactoperoxidase. In Milk Proteins-From Structure to Biological Properties and Health Aspects. InTech,Chapter 7: 142-156,
  • Kumar R, Bhatla KL, 1995. Purification, crystallization and preliminary x-ray crystallographic analysis of lactoperoxidase from buffalo milk. Acta Crystallographica, 51: 1094.
  • Kussendrager KD, van Hooijdonk ACM, 2000. Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. British Journal of Nutrition, 84: 19–25.
  • Lima V.N, Oliveira-Tintino C.D, Santos E.S, Morais L.P, Tintino S.R, Freitas T. S, Coutinho H.D, 2016. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microbial pathogenesis, 99: 56-61.
  • Ozdemir H, Aygul I, Kufrevioglu OI, 2001. Purification of lactoperoxidase from bovine milk and investigation of the kinetic properties. Preparative Biochemistry and Biotechnology, 31: 125–134.
  • Pourtois M, Binet C, Van Tieghem N, Courtois PR, Vandenabbeele A, Thirty L, 1991. Saliva can contribute in quick inhibition of HIV infectivity. AIDS, 5: 598–600.
  • Reiter B, Perraudin JP, 1991. Lactoperoxidase: biological functions. In: Peroxydases in Chemistry and Biology. Boca Raton: CRC Press, 143–180.
  • Santos N.K.A, Coutinho H.D.M, Viana G.S.B, Rodrigues F.F.G, Costa J.G.M, 2011. Chemical characterization and synergistic antibiotic activity of volatile compounds from the essential oil of Vanillosmopsis arborea, Med. Chem. Res., 20: 637-641.
  • Sarikaya SBO, Gulcin I, Supuran CT, 2010. Carbonic anhydrase inhibitors: inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem Biol Drug Des., 75(5): 515–520.
  • Sarikaya SBO, Sisecioglu M, Cankaya M, Gulcin I, Ozdemir H, 2015. Inhibition profile of a series of phenolic acids on bovine lactoperoxidase enzyme. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(3): 479–483.
  • Shindler JS, Bardsley WG, 1975. Steady-state kinetics of lactoperoxidase with ABTS as chromogen. Biochemical and Biophysical Research Communications, 67: 1307.
  • Sievers G, 1980. Structure of milk lactoperoxidase. A study using circular dischroism and difference absorption sperctroscopy. Biochimica et Biophysica Acta, 624; 249.
  • Simoes C.C, Araújo D.B.D, Araújo R.P.C.D, 2008. Estudo in vitro e ex vivo da açao de diferentes concetraçoes de extratos de pr_opolis frente aos microrganismos presente na saliva de humanos, Rev. Bras. Farmacogn. 18: 84-89.
  • Sisecioğlu M, Cankaya M, Ozdemir H, 2009. Effects of some vitamins on lactoperoxidase enzyme activity. Internatıonal Journal for Vitamin and Nutrition Research, 79: 188–194.
  • Sisecioglu M, Gulcin I, Cankaya M, Atasever A, Ozdemir H, 2010. The effects of norepinephrine on lactoperoxidase enzyme. Scientific Research and Essays, 5: 1351-1356.
  • Uguz MT, Ozdemir H, 2005. Purification of bovine milk lactoperoxidase and investigation of antibacterial properties at different thiocyanate mediated. Applied Biochemistry and Microbiology, 41: 397–401.
  • Van Huystee RB, 1987. Some molecular aspects of plant peroxidase biosynthetic studies. Annual Review of Plant Physiology, 38: 205.
  • Wever R, Kast WM, Kasinoedin JH, Boelens R, 1982. The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase. Biochimica et Biophysica Acta, 709: 212–219.
  • Wolfson LM, Sumner SS, 1993. Antimicrobial activity of the lactoperoxidase system: a review. Journal of Food Protection, 56: 887–892.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -