Kür Koşullarının Çimento Bulamacı Emdirilmiş Lifli Betonun (SIFCON) Kırılma Enerjisi ve Geçirimlilik Özelliklerine Etkileri

Bu çalışmada, normal mukavemetli (3D) ve yüksek mukavemetli (5D) çelik lifler ve poliolefin esaslı sentetik lif içeren SIFCON’un 90°C buhar kürü ve 150°C etüv kürü sonrası mekanik davranışı ve özellikle de kırılma enerjisi değerleri incelenmiştir. Ayrıca ısıl kür işlemlerinin SIFCON’un geçirimlilik özelliklerine etkisi kılcal su emme testleri ile belirlenmiştir. Çelik lifler hacimce %4 ve %8 oranında kullanılmıştır. Bununla birlikte, poliolefin lif sadece %4 oranında kullanılmıştır. Karşılaştırma amacıyla lif kullanılmayan referans numunelerde hazırlanmıştır. En yüksek kırılma enerjisi değerleri, 19,7 kN/m olarak 5D tipi yüksek dayanımlı çelik lif içeren numunelerde elde edilmiştir. Lifli karışımlar arasında ise en düşük kırılma enerjisi, poliolefin lifleri içeren numunelerde 5,7 kN/m olarak belirlenmiştir. Geçirimlilik testlerinde ise etüv kürü uygulanan numunelerin kılcal su emme değerleri buhar kürü uygulanan numunelere göre daha yüksektir. Çalışma sonucunda, daha yüksek sıcaklıkta uygulanan etüv kürünün, SIFCON’un mekanik özelliklerini ve kırılma enerjisi değerlerini buhar kürüne göre daha fazla geliştirdiği tespit edilmiştir. Buna karşın, etüv kürünün SIFCON’un kılcal su emme değerlerini arttırdığı ve buhar kürüne kıyasla geçirimliliği olumsuz olarak etkilediği belirlenmiştir.

Effects of Curing Regimes on Fracture Energy and Permeability Properties of Slurry Infiltrated Fiber Concrete (SIFCON)

In this study, mechanical behavior and fracture energy values of SIFCON containing normal strength (3D) and high strength (5D) steel fibers and polyolefin-based synthetic fiber after 90°C steam curing and 150°C oven curing were investigated. In addition, the effect of thermal curing processes on the permeability properties of SIFCON was determined by capillary water absorption tests. Steel fibers were used at 4% and 8% by volume. On the other hand, polyolefin fiber was used only 4%. It was prepared in reference samples that did not use fiber for comparison purposes. The highest fracture energy values were obtained in the samples containing 5D type high strength steel fiber as 19,7 kN/m. Among the fibrous mixtures, the lowest fracture energy was found to be 5,7 kN/m in the samples containing polyolefin fibers. The capillary water absorption values of the oven-cured samples in permeability tests are higher than the steam-cured samples. As a result of the study, it was determined that the oven cure applied at higher temperature improved the mechanical properties and fracture energy values of SIFCON more than the steam cure. On the other hand, it was understood that the oven cure increased the capillary water absorption values of SIFCON and negatively affected the permeability compared to the steam cure.

___

  • Abdollahi, B., Bakhshi, M., Mirzaee, Z., Shekarchi, M., & Motavalli, M. (2012). SIFCON strengthening of concrete cylinders in comparison with conventional GFRP confinement method. Construction and Building Materials, 36, 765-778.
  • Akçaözoğlu, K., & Kıllı, A. (2021). The effect of curing conditions on the mechanical properties of SIFCON. Revista de la construcción, 20(1), 37-51.
  • Ali, A. S., & Riyadh, Z. (2018). Experimental and Numerical Study on the Effects of Size and type of Steel Fibers on the (SIFCON) Concrete Specimens. International Journal of Applied Engineering Research, 13(2), 1344-1353.
  • Ali, M. H., Atiş, C. D., & Al-Kamaki, Y. S. S. (2022). Mechanical properties and efficiency of SIFCON samples at elevated temperature cured with standard and accelerated method. Case Studies in Construction Materials, 17, e01281.
  • Al-mashhadanı, M. M. M. (2021). Strength Behavior of Geopolymer Based SIFCON with Different Fibers . Avrupa Bilim ve Teknoloji Dergisi , Ejosat Special Issue 2021 (ICAENS) , 1342-1347 . DOI: 10.31590/ejosat.1015350
  • Anonim, 2021. Environmental Product Declaration Type III ITB No. 215/202, https://www.bekaert.com
  • ASTM C1585 - Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, 2020 Edition, September 1, 2020.
  • Aygormez, Y., Al-mashhadani, M. M., & Canpolat, O. (2020). High-temperature effects on white cement-based slurry infiltrated fiber concrete with metakaolin and fly ash additive. Revista de la construcción, 19(2), 324-333.
  • Azoom, K. T., & Pannem, R. M. R. (2017). Punching strength and impact resistance study of sifcon with different fibres. International Journal of Civil Engineering and Technology, 8(4), 1123-1131.
  • Balaji, S., & Thirugnanam, G. S. (2018). Behaviour of reinforced concrete beams with SIFCON at various locations in the beam. KSCE Journal of Civil Engineering, 22(1), 161-166. Balamuralikrishnan, R. (2015). Cyclic behavior of reinforced concrete beams retrofitted with externally bonded SIFCON laminates. Asian Journal of Civil Engineering, 16, 1063-1075.
  • Beglarigale, A., Yalçınkaya, Ç., Yiğiter, H., & Yazıcı, H. (2016). Flexural performance of SIFCON composites subjected to high temperature. Construction and Building Materials, 104, 99-108.
  • Canbaz, M., & Çelikten, S. (2020). Kırpılmış atık taşıt lastiklerinin SIFCON üretiminde farkli bağlayicilarla değerlendirilmesi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(1), 9-15.
  • Chen G, Zhao L, Gao D, Yuan J, Bai J, Wang W (2022). Flexural Tensile Behavior of Single and Novel Multiple Hooked-End Steel Fiber–Reinforced Notched Concrete Beams. Journal of Materials in Civil Engineering, 34(6), 04022077.
  • Chun, P. J., Lee, S. H., Cho, S. H., & Lim, Y. M. (2013). Experimental study on blast resistance of SIFCON. Journal of Advanced Concrete Technology, 11(4), 144-150. Dagar, K. (2012). Slurry infiltrated fibrous concrete (SIFCON). International Journal of Applied Engineering and Technology, 2(2), 99-100.
  • EN 12390-3 Testing hardened concrete Compressive strength of test specimens
  • EN 12390-6 Testing hardened concrete Tensile splitting strength of test specimens
  • Farnam, Y., Moosavi, M., Shekarchi, M., Babanajad, S. K., & Bagherzadeh, A. (2010). Behaviour of slurry infiltrated fibre concrete (SIFCON) under triaxial compression. Cement and concrete research, 40(11), 1571-1581.
  • Gao D, Ding C, Pang Y, Chen G (2021). An inverse analysis method for multi-linear tensile stress-crack opening relationship of 3D/4D/5D steel fiber reinforced concrete. Construction and Building Materials, 309, 125074.
  • Guler, S., & Akbulut, Z. F. (2022). Residual strength and toughness properties of 3D, 4D and 5D steel fiber-reinforced concrete exposed to high temperatures. Construction and Building Materials, 327, 126945.
  • Gulkan, P., & Korucu, H. (2011). High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs. Part II: numerical simulation and validation. Structural Engineering and Mechanics, 40(5), 617-636
  • İpek, M., Canbay, M., & Yılmaz, K. (2015). Çelik ve polipropilen liflerin yalın ve kombinasyonlu olarak kullanılmasının SİFCON'un mekanik ve fiziksel özelliklere etkisi. Sakarya University Journal of Science, 19(1), 41-52.
  • Ipek, M., & Aksu, M. (2019). The effect of different types of fiber on flexure strength and fracture toughness in SIFCON. Construction and Building Materials, 214, 207-218. Lankard, D. R. (1984). Slurry infiltrated fiber concrete (SIFCON): Properties and applications. MRS Online Proceedings Library, 42(1), 277-286.
  • Lee, S. J., Yoo, D. Y., & Moon, D. Y. (2019). Effects of hooked-end steel fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks. Applied Sciences, 9(6), 1241.
  • Mohan, A., Karthika, S., Ajith, J., & Tholkapiyan, M. (2020). Investigation on ultra high strength slurry infiltrated multiscale fibre reinforced concrete. Materials Today: Proceedings, 22, 904-911.
  • Özalp, F. (2016). Kür koşulları ve yalıtımın yüksek dayanımlı betonların geçirimlilik, iç-yapı ve mekanik özeliklerine etkileri, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Rasheed, M. A., & Prakash, S. S. (2018). Behavior of hybrid-synthetic fiber reinforced cellular lightweight concrete under uniaxial tension–Experimental and analytical studies. Construction and Building Materials, 162, 857-870.
  • Rao, H. S., Ghorpade, V. G., Ramana, N. V., & Gnaneswar, K. (2010). Response of SIFCON two-way slabs under impact loading. International Journal of Impact Engineering, 37(4), 452-458
  • Rattan, A., & Singh, J. (2018, November). Development of Ultra High Strength SIFCON. In International Conference on Sustainable Waste Management through Design (pp. 178-186). Springer, Cham.
  • RILEM 50-FMC. (1985). Determination of fracture energy of mortar and concrete by means of three-point bend tests on notched beams”, Materials and Structures, Vol. 18, pp. 285-290.
  • Salih, S. A., Frayyeh, Q. J., & Ali, M. A. A. W. (2018). Flexural Behavior of Slurry Infiltrated Fiber Concrete (SIFCON) Containing Supplementary Cementitiouse Materials. Journal of Engineering and Sustainable Development, 22(2), 35-48.
  • Schneider, B. (1992). Development of SIFCON through Applications. In High Performance Fiber Reinforced Cement Composites (pp. 177-194).
  • Sengul, O. (2018). Mechanical properties of slurry infiltrated fiber concrete produced with waste steel fibers. Construction and Building Materials, 186, 1082-1091.
  • Soylu, N., & Bingöl, A. F. (2019). Research on effect of the quantity and aspect ratio of steel fibers on compressive and flexural strength of SIFCON. Challenge Journal of Structural Mechanics, 5(1), 29.
  • Sun, G., Tong, S., Chen, D., Gong, Z., & Li, Q. (2018). Mechanical properties of hybrid composites reinforced by carbon and basalt fibers. International Journal of Mechanical Sciences, 148, 636-651.
  • Tuyan, M., & Yazıcı, H. (2012). Pull-out behavior of single steel fiber from SIFCON matrix. Construction and Building Materials, 35, 571-577.
  • Venkateshwaran A, Tan KH, Li Y (2018). Residual flexural strengths of steel fiber reinforced concrete with multiple hooked‐end fibers. Structural Concrete, 19(2), 352-365.
  • Yalçınkaya, Ç., & Beglarigale, A. (2014). The effect of metakaolin and end type of steel fiber on fiber-SIFCON matrix bond characteristics. Usak University Journal of Material Sciences, 3(1), 97-105.
  • Yazıcı, H., Yiğiter, H., Aydın, S., & Baradan, B. (2006). Autoclaved SIFCON with high volume Class C fly ash binder phase. Cement and concrete research, 36(3), 481-486.
  • Yazıcı, H., Aydın, S., Yiğiter, H., Yardımcı, M. Y., & Alptuna, G. (2010). Improvement on SIFCON performance by fiber orientation and high-volume mineral admixtures. Journal of materials in civil engineering, 22(11), 1093-1101.