Konteyner Terminallerinde Ağır Vasıta Park Sahası Kapasitesinin Simülasyon Yöntemi ile Optimizasyonu

Konteyner terminalleri konteyner yüklerinin dağıtıldığı, toplandığı, ulaştırma türünün değiştirildiği yerlerdir ve ülkelerin dış ticaret performansı için önemli birer ulaştırma yapılarıdır. Günümüzde konteyner birim yükünün ve türler arası ulaştırma olanaklarının gelişmesi farklı ulaştırma türlerinin kombine bir şekilde kullanılabilmesinin önünü açmıştır. Bu durum kombine yük taşımacılığında avantaj sağlayan demiryolu taşımacılığının önemini giderek daha da arttırmıştır. Bu gelişmelere rağmen bazı ülkelerde demiryolu taşımacılığı yerine karayolu taşımacılığının halen etkin bir şekilde kullanıldığı görülmektedir. Diğer ulaştırma türleri ile karşılaştırıldığında konteyner terminallerinde karayolu taşımacılığı, bağlantılı karayolu altyapısında trafik sıkışıklığı, gürültü kirliliği, hava kirliliği vb. trafik ve çevre sorunlarına yol açmaktadır. Bu problem özellikle limanların çevresinde ağır vasıtaların park etme arayışları ve konteyner terminallerinde yük almak ya da boşaltmak için kuyruğa girmesiyle ciddi trafik ve çevresel problemlere neden olabilmektedir. Bu çalışmada belirtilen bu problemlerin çözümünde katkı sağlayabilmek amacıyla tipik bir konteyner terminali için ağır vasıta park sahası tasarımı gerçekleştirilmiştir. Saha kapasitesi için öncül bir kapasite optimizasyon çalışması, simülasyon modeli desteği ile yapılmıştır. Park saha kapasitesinin belirlenmesi için bir maliyet optimizasyonu yöntemi geliştirilerek, simülasyon model çıktıları ile kapasite optimizasyonu hedeflenmiştir. Çalışma sonucunda simülasyon optimizasyon yöntemi ile ağır vasıtaların yol ağlarında ve limanlarda beklemelerini önleyebilmek amacıyla optimum park sahası kapasitesinin belirlenebildiği ortaya konmuştur.

Optimization of the Parking Area Capacity for Heavy Vehicles at Container Terminals Using Simulation Optimization Approach

Container terminals are important infrastructures for trade performance of countries where containers are distributed, collected and change their transportation modes. Today, the development of the intermodal transportation and emerge of the marine containers has enabled the use of different transportation modes in a combined way. Therefore the importance of railway transportation, providing significant advantage for intermodal transportation, has gradually increased. Unfortunately, the road transport is still the leading transportation model in several countries. When compared with other modes of transport, road freight transportation cause severe traffic congestion problems and contributes to the environmental problems such as noise and air pollution. This problem is especially vigorous due to the truck parking and pooling phenomena around the container terminals and terminal gates. In this study, a typical capacity optimization study was conducted for a heavy vehicle parking are within a container terminal using a simulation model. A cost optimization procedure was proposed for determination of the optimum parking area capacity by utilizing the simulation model output. In the study, it was revealed that the optimum heavy vehicle parking area capacity can be determined by simulation optimization method coupled with a cost model.

___

  • Adam S, 2009. Simulation and analysis of port bottlenecks: the case of Male (Doctoral dissertation, Lincoln University). pp. 1–130.
  • Awad-Núñez S, Soler-Flores F, González-Cancelas N, Camarero-Orive A, 2016. How should the Sustainability of the Location of Dry Ports be Measured?. Transportation Research Procedia, https://doi.org/10.1016/j.trpro.2016.05.073
  • Bentolila DJ, Ziedenveber RK, Hayuth, Y, Notteboom, T, 2016. Off-peak truck deliveries at container terminals: the “Good Night” program in Israel. Maritime Business Review, 1(1), 2-20.
  • Davies P, Kieran M, 2015. Port congestion and drayage efficiency, paper presented at the METRANS international urban freight conference. Long Beach, CA.
  • De Langen PW, Van Meijeren J, Tavasszy LA, 2012. Combining Models and Commodity Chain Research for Making Long-Term Projections of Port Throughput: an Application to the HamburgLe Havre Range. European Journal of Transport and Infrastructure Research, 12(3).
  • Dieussaert K, Aerts K, Steenberghen T, Maerivoet S, Spitaels K, 2009. SUSTAPARK: An agent-based model for simulating parking search. In AGILE International Conference on Geographic Information Science, Hannover pp. 1-11.
  • Economic and Social Commission for Asia and the Pacific (ESCAP) (2005). Regional Shipping and Port Development Strategies (Container Traffic Forecast).
  • Giuliano G, O’Brien T, 2008. Responding to Increasing Port-related Freight Volumes: Lessons from Los Angeles/Long Beach and Other US Ports and Hinterlands. JTRC OECD. ITF Discussion Paper 2008-12.
  • Gökkuş Ü, Yıldırım MS, Aydin MM, 2017. Estimation of container traffic at seaports by using several soft computing methods: a case of Turkish Seaports. Discrete Dynamics in Nature and Society, 2017.
  • Gracia MD, González-Ramírez RG, Mar-Ortiz J, 2017. The impact of lanes segmentation and booking levels on a container terminal gate congestion. Flexible Services and Manufacturing Journal. 29(3-4), 403-432.
  • Hartmann S, Pohlmann J, Schönkne A, 2011. Simulation of container ship arrivals and quay occupation. Operations Research/ Computer Science Interfaces Series, 49(1), 135–154. https://doi.org/10.1007/978-1-4419-8408-18
  • Huynh N, Harder F, Smith, D, Sharif O, Pham Q, 2011. Truck delays at seaports: assessment using terminal webcams. Transportation Research Record, 2222(1), 54-62.
  • Huynh N, Smith D, Harder F, 2016. Truck appointment systems: where we are and where to go from here. Transportation Research Record, 2548(1), 1-9.
  • through the use of an appointment system. In Handbook of terminal planning (pp. 323-344). Springer, New York, NY.
  • Lange AK, Schwientek A, Jahn C, 2017. Reducing truck congestion at ports–classification and trends. In Proceedings of the Hamburg International Conference of Logistics (HICL) (pp. 37-58). epubli.
  • Merkurjevs J, 2006. Simulation Modelling and Research of Marine Container Terminal Logistics Chains, PhD. Thesis. Transport and Telecommunıcatıon Institute, 172p.
  • Merkuryev Y, Tolujew J, Blümel E, Novitsky L, Ginters E, Viktorova E, Pronins J, 1998. A modelling and simulation methodology for managing the Riga Harbour container terminal. Simulation, 71(2), 84-95.
  • Turkish Exporters Assembly (TEM), 2014. Economy and foreign trade report.
  • Ulaştırma ve Altyapı Bakanlığı 2015. Limanlar Geri Saha Karayolu ve Demiryolu Bağlantıları Master Plan Çalışması.
  • United Nations Conference on Trade and Development (UNCTAD), 1985. Port development, A handbook for planners in developing countries, 1985. United Nations Conference on Trade and Development. https://doi.org/10.1016/j.jdeveco.2010.08.004
  • URL-1.https://www.livemint.com/Politics/fgRmspkbv7UhWqqpTBK9sJ/Chennai-port-users-await-a-lasting-solution-for-congestion.html Son Erişim Tarihi: [18 Eylül 2019].
  • URL-2. https://www.cnbc.com/2014/11/05/congestion-at-west-coast-ports-is-economic-in-part.html Son Erişim Tarihi: [18 Eylül 2019].
  • Van Vianen T, Ottjes J, Lodewijks G, 2014. Simulation-based determination of the required stockyard size for dry bulk terminals. Simulation Modelling Practice and Theory, 42, 119–128. https://doi.org/10.1016/j.simpat.2013.12.010
  • Vo TTA, Van Der Waerden P, Wets G, 2016. Micro-simulation of car drivers’ movements at parking lots. In Procedia Engineering. https://doi.org/10.1016/j.proeng.2016.02.019
  • Yıldırım MS, Aydın MM ve Gökkuş Ü, 2019. Şehir Limanları İçin Ağır Araç Otoparkların Kapasitelerinin Simülasyon Yöntemi İle Tayini, 1st ICIVILTECH 2019 Symposium, 23-25 Ekim, Afyon, Türkiye, pp.1-1.
  • YPC (Yuksel Project Consulting), 2009. Transportation master plan study for coastal structure. 2, Interim Report, 2009 (Turkish).
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -