Türkiye’de Nükleer Enerji Öncesi Trabzon İlinde Yaşayan Bazı İnsanlarda Trityum Konsantrasyonları

Çalışma, Türkiye’nin kuzey doğusunda ve Karadeniz sahilinde yer alan Trabzon ilinde gerçekleştirilmiştir. Trabzon ilinin merkez ilçesinde 317 520 kişi yaşamaktadır. İnsanlardaki trityum konsantrasyonu, idrarlarındaki trityum aktivite konsantrasyonunun ölçülmesi suretiyle belirlenir. Bu kapsamda, Türkiye İstatistik Kurumu tarafından belirlenen hanelerde yaşayan 100 katılımcıdan idrar örnekleri alındı ve analiz edildi. Örneklerdeki trityum konsantrasyonları sıvı sintilasyon sayacı (LSC) ile belirlendi. Katılımcıların yaşı 18 ile 65 arasında değişmekte olup, yaş ortalaması 34.99’dur. Katılımcıların idrar örneklerinde ortalama trityum konsantrasyonu 13.37 ± 2.33 Bq L-1, maksimum konsantrasyon 33.23 Bq L-1 olarak bulundu. Uygulanan metodun MDA’sı 2.59 Bq L-1 olarak belirlendi. 23 örneğin (%23) trityum konsantrasyonu MDA’nın altında tespit edildi. Kadın ve erkeklerin idrar örneklerinde ortalama trityum konsantrasyonları sırasıyla 13.45 ± 2.39 Bq L-1 ve 13.32 ± 2.30 Bq L-1 olarak bulundu. Ayrıca, yıllık etkin doz oranları kadınlar için 11.13 nSv ve erkekler için 12.78 nSv olarak hesaplandı. Hesaplanan bu yıllık etkin doz oranları, Uluslararası Radyasyondan Korunma Komitesi (ICRP) tarafından önerilen değerlerden oldukça düşüktür.

Tritium Concentrations in Some People Living in Trabzon Ahead of Nuclear Energy in Turkey

The study was conducted in Trabzon province wherein north-east Turkey and situated on the Black Sea coast. The population of Trabzon city center is 317 520 people. The tritium concentration in the human body is estimated by measuring the activity concentration of tritium in urine. In this context, urine samples was taken and analyzed from 100 participants living in households determined by Turkey Statistical Institute. Tritium concentrations in the samples were measured by the liquid scintillation counter (LSC). The ages of participants range from 18 to 65, with the average is 34.99. The average tritium concentration in their urine samples was found as 13.37 ± 2.33 Bq L-1 and the maximum 33.23 Bq L-1. The MDA for this method was 2.59 Bq L-1. The tritium concentrations of 23 samples (23%) were below of the MDA. The average tritium concentrations in urine samples of females and males were found as 13.45 ± 2.39 Bq L-1 and 13.32 ± 2.30 Bq L-1, respectively. Also, the annual effective dose rates were calculated as 11.13 nSv for females and 12.78 nSv for males. Calculated annual effective dose rates are quite lower than the recommended values by International Commission on Radiological Protection (ICRP).

___

  • Belloni P, Clemente GF, Di Pietro S, Ingra G, 1983. Tritium levels in blood and urine samples of the members of the Italian general population and some exposed subject. Radiation Protection Dosimetry, 4: 109–113.
  • Cawley CN, Lewis BA, Cannon LA, 1985. Possible parameters in the urinary excretion of tritium. Transactions of the American Nuclear Society, 50: 39–44.
  • Currie LA, 1968. Limits for qualitative detection and quantitative determination. Analytical Chemistry, 40: 586–593.
  • Dizman S, Keser R, Yılmaz A, Çakır B, 2018. Giresun ilinde yaşayan insanlarda trityum düzeyleri. Nature Sciences, 13(1): 1-6.
  • Dizman S, Yilmaz A, Keser R, 2015. Determination of tritium concentrations in humans before the development of a nuclear power plant in Turkey. Isotopes in Environmental and Health Studies, 51: 478-484.
  • ETKB, 2012. Nükleer Santraller ve Ülkemizde Kurulacak Nükleer Santrale İlişkin Bilgiler. T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Ankara, 1: 1-61.
  • ETKB, 2013. Nükleer Güç Santralleri ve Türkiye. T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Ankara, 2: 1-28.
  • Etnier EL, Travis CC, Hetrick DM, 1984. Metabolism of organically bound tritium in man. Radiation Research, 100: 487–502.
  • Hill RL, Johnson JR, 1993. Metabolism and dosimetry of tritium. Health Physics, 65: 628–647.
  • ICRP, 1999. Protection of the public in situations of prolonged radiation exposure. International Commission on Radiological Protection, ICRP Publication 82, Ann. ICRP 29, Ottawa.
  • ICRP, 1997. Individual monitoring for internal exposure of workers. International Commission on Radiological Protection, ICRP Publication 78, Ann. ICRP 27, Ottawa.
  • ICRP, 1994. Limits for intakes of radionuclides by workers. International Commission on Radiological Protection, ICRP Publication 30, Ann. ICRP 2, Ottawa.
  • Makhijani A, Makhijani A, 2009. Radioactive Rivers and Rain: Routine Releases of Tritiated Water from Nuclear Power Plants. Science for Democratic Action, 16: 1-10.
  • Matsumoto T, Maruoka T, Shimoda G, Obata H, Kagi H, Suzuki K, Yamamoto K, Mitsuguchi T, Hagino K, Tomioka N, Sambandam C, Brummer D, Klaus P M, Aggarwal P, 2013. Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi Nuclear Plant accident. Science of the Total Environment, 445: 365-370.
  • Okada S, Momoshima N, 1993. Overview of tritium characteristics, sources, and problems. Health Physics, 65: 595–609.
  • Puhakainen M, Heikkinen T, 2008. Tritium in the urine in Finnish people. Radiation Protection Dosimetry, 128: 254–257.
  • Shen BM, Ji YQ, Tian Q, Shao XZ, Yin LL, Su X, 2015. Determination of total tritium in urine from residents living in the vicinity of nuclear power plants in Qinshan, China. International Journal of Environmental Research and Public Health, 12: 888–894.
  • TUİK, 2019. Adrese Dayalı Nüfus Kayıt sistemi. Türkiye İstatistik Kurumu, Ankara.
  • UNSCEAR, 1982. Sources and Effects of Ionizing Radiation: Sources and Biological Effects. Report to the General Assembly with Annexes, United Nations Scientific Committee on the Effects of Atomic Radiation, New York.
  • Yoon S, Ha WH, Lee SS, 2013. Tritium analysis of urine samples from the general Korean public. Applied Radiation and Isotopes, 81: 276–278.