İki Boyutlu Silindirik Dağıtıcılı Sonik Kristal Yapılarının Akustik Lens Özelliklerinin ZamanBölgesi Sonlu Fark Simülasyonları ile İncelenmesi

Fotonik kristallerde gözlemlenen birçok dalga yayılım özellikleri sonraları sonik kristallerüzerinde gösterilmiştir. Sonik kristal yapılar negatif kırınım, düzlem lens, dalga kılavuzları gibi birçokakustik dalga uygulamasına imkân sağlayan akustik metamateriyaldir ve sonic kristal uygulamaları sonyılarda yoğun bir şekilde çalışılmaktadır. Bu çalışmada iki boyutlu temel sonik kristal yapıları kısacatanıtılmakta ve zaman bölgesi sonlu farklar (Finite Difference Time Domain-FDTD) yöntemisimülasyon sonuçları ile sonik kristal yapılarda negatif kırınım özelliği ve dalga odaklamauygulamalarının bir incelemesini sunulmaktadır. Negatif kırınım ve buna bağlı olarak gerçekleşenakustik dalgaların odaklanmasını konu alan pek çok çalışma bulunmaktadır. Bu çalışma bu konudayapılan önemli çalışmaları kısaca incelenmekte ve zaman bölgesi sonlu farklar yöntemi simülasyonlarıyardımı ile negatif kırınım ve bununla ilişkili akustik dalga odaklanma olaylarının zaman bölgesisimülasyon sonuçlarını sunmaktadır. Araştırma sonuçları zaman bölgesi sonlu farklar simülasyonlarınınsonik kristal düzlem lens tasarımı çalışmalarında kullanılabileceğini göstermiştir.

Investigation of Acoustic Lens Properties of Two-dimensional Cylindrical Scatterer Sonic Crystal Structures via Finite Difference Time Domain Simulations

Many wave propagation properties, which were observed in photonic crystals, have beendemonstrated for sonic crystals, later. The sonic crystal structures are acoustic metamaterials that allowacoustic wave applications such as negative refraction, flat lens, wave guides, and their applicationshave been intensively studied in recent years. This study introduces fundamental two-dimensional soniccrystal structures and presents an overview for the negative refraction properties and its wave focusingapplications by using Finite Difference Time Domain (FDTD) simulation results. There are manystudies that address negative refraction and its associated phenomenon acoustic wave focusing. Thisstudy briefly reviews some important studies related to this topic and presents time-domain simulationresults in order to illustrate negative refraction and the related acoustic wave focusing phenomenon bymeans of FDTD simulations. Research findings indicates that FDTD simulations can be used for designtasks of sonic crystal flat lens.

___

  • Alagoz BB, Alagoz S, 2011. Towards earthquake shields: A numerical investigation of earthquake shielding with seismic crystals. Open Journal of Acoustics 1(3): 63-69.
  • Alagoz S, Kaya OA, Alagoz BB, 2009. Frequency-controlled wave focusing by a sonic crystal lens. Applied Acoustics 70(11): 1400-1405.
  • Alagoz S. (2011). Experimental observation of far-field and near-field focusing in a sonic crystal flat lens in air. Measurement Science and Technology 22(11): 115105.
  • Alagoz S, (2012). An Investigation on Acoustic Wave Focalization by a Square Lattice Flat Lens. Archives of Acoustics, 37, 81-87.
  • Chao-Hsien K, Zhen Y, 2004. Crystal lenses that obey the lensmaker’s formula. J. Phys. D: Appl. Phys. 37: 2155–2159
  • Cervera F, Sanchis L, Sanchez-Perez JV, Martinez-Sala R, Rubio C, Meseguer F, Lopez C, Caballero D, Sanchez-Dehesa J, 2001. Refractive Acoustic Devices for Airborne Sound. Phys. Rev. Lett. 88: 023902.
  • Climente A, Torrent D, Sánchez-Dehesa J (2010). Sound focusing by gradient index sonic lenses. Applied Physics Letters, 97(10): 104103.
  • Feng L, Liu XP, Chen YB, Huang ZP, Mao YW, Chen YF, Zi J, Zhu YY, 2005. Negative refraction of acoustic waves in two-dimensional sonic crystals. Phys. Rev. B 72:033108.
  • Foteinopoulou S, Economou EN, Soukoulis CM 2003. Refraction at media with negative refractive index. Phys. Rev. Lett. 90:107402.
  • Houck AA, Brock JB, Chuang IL, 2003. Experimental observations of a left-handed material that obeys snell's law. Phys. Rev. Lett. 90:137401.
  • Jia W, Zhang S 2007. Strongly frequency-dependent negative refraction of a two-dimensional sonic crystal wedge. Physics Letters A 372:721-724.
  • Liu A, Zhou X, Huang G, Hu G, 2012. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials. The Journal of the Acoustical Society of America, 132(4):2800-2806.
  • Liu T, Chen F, Liang S, Gao H, Zhu J, 2019. Subwavelength sound focusing and imaging via gradient metasurface-enabled spoof surface acoustic wave modulation. Physical Review Applied, 11(3): 034061.
  • Miyashita T, Inoue C, 2001. Numerical investigations of transmission and waveguide properties of sonic crystals by finite-difference time-domain method. Japan. J. Appl. Phys. 40:3488–92.
  • Miyashita T, 2005. Sonic crystals and sonic wave-guides”, Meas. Sci. Technol.16:R47-R6.
  • Hirsekorn M, 2006. Elastic Wave Propagation in Locally Resonant Sonic Materials. Thesis for the Degree of Ph. D. of the University of Politecnico Di Torino, Italy.
  • Martinez-Sala R, Sancho J, Sanchez JV, Gomez V, Llinares J, Meseguer F,1995. Sound attenuation by sculpture. Nature 378:241.
  • Miniaci M., Krushynska, A., Bosia, F., & Pugno, N. M. (2016). Large scale mechanical metamaterials as seismic shields. New Journal of Physics, 18(8), 083041.
  • Mu D., Shu, H., Zhao, L., & An, S. (2020). A review of research on seismic metamaterials. Advanced Engineering Materials, 22(4), 1901148.
  • Ozbay E, Aydin K, Bulu I, Guven K, 2007. Negative refraction, subwavelength focusing and beam formation by photonic crystals, J. Phys. D: Appl. Phys. 40, 2652–2658.
  • Qiu C, Zhang X, Liu Z, 2005.Far-field imaging of acoustic waves by a two-dimensional sonic crystal. Phys Reviev B 2005; 71: 054302.
  • Pendry JB, 2000. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18): 3966–3969.
  • Sigalas MM, Garcia N, 2000. Theoretical study of three dimensional elastic band gaps with the finitedifference time-domain methods, J. Appl. Phys. 87, 3122–5.
  • Veselago VG, 1968. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Upekhi 10 (4):509-514.
  • Wang J, 2020. A seismic-shielding structure based on phononic crystal. Revista de la Construcción. Journal of Construction, 19(3): 272-287.
  • Zhang XD, Liu ZY, 2004. Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85: 341.
  • Zhu J Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Garcia-Vidal FJ, 2011. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nature physics 7(1):52-55.