İğde Çekirdeklerinden Elde Edilen Biyokömür Kullanılarak Sulu Çözeltiden Kristal Viyole Boyarmaddesinin Uzaklaştırılması

Bu çalışmada iğde çekirdeklerinden (elaeagnus angustifolia L.) elde edilen biyökömür (EAL) ile katyonik bir boya olan ve endüstride yaygın olarak kullanılan kristal viyole (KRV) boyarmaddesinin sulu çözeltiden giderimi farklı parametreler ile yapılmıştır. Sıcaklık, konsantrasyon, adsorban miktarı, pH ve zaman değişimleri sonucu elde edilen adsorpsiyon değerleri, denge izotermleri, termodinamik ve kinetik açıdan değerlendirilmiştir. Çalkalamalı/kesikli adsorpsiyon metoduna göre sıcaklık, pH, zaman, adsorban miktarı ve konsantrasyon parametrelerinin EAL-KRV adsorpsiyonu üzerindeki etkileri incelenmiştir. Elde edilen sonuçlardan EAL-KRV için maksimum adsorpsiyon kapasitesi qmaks=10.537 mg/g bulunmuştur. Prosesin yalancı-ikinci-derece üzerinden ilerlediği, endotermik olduğu ve prosesin Langmuir adsorpsiyon izotermine uyduğu bulunmuştur. Elde edilen negatif ΔG° değerleri, prosesin kendiliğinden, istemli olarak gerçekleştiğini göstermiştir. EAL, literatürde KRV giderimi için kullanılan benzer adsorbanlarla birlikte değerlendirildiğinde EAL’nin maksimum adsorpsiyon kapasitesi değeri bazı çalışmalara yakın bulunmuştur. Tüm sonuçlar değerlendirildiğinde EAL'nin sulu çözeltilerden KRV boyarmaddesinin gideriminde kullanılabileceği sonucuna ulaşılmıştır.

Removal of Crystal Violet Dye from Aqueous Solution Using Biochar Obtained from Oleaster Seeds

In this study, the removal of biochar (EAL) obtained from oleaster seeds (elaeagnus angustifolia L.) and crystal violet (CRV) dye, which is a cationic dye, widely used in the industry, was carried out with different parameters. Adsorption values and thermodynamic parameters accordance with the isotherms and kinetics were evaluated with the help of temperature, concentration change, amount of adsorbent, pH and time changes. Temperature, pH, time, amount of adsorbent and concentration parameters on EAL-KRV adsorption were .investigated according to the shake/batch adsorption method. Obtained results indicated that the maximum adsorption capacity qmax of EAL-CRV was 10.537 mg/g. It was found that the process proceeds over the pseudo-second order, is endothermic, and conforms to the Langmuir adsorption isotherm. Obtained negative ΔG° values led to the conclusion that EAL is suitable for CRV removal. When EAL was evaluated together with similar adsorbents used for CRV removal in the literature, the maximum adsorption capacity value of EAL was found close to some studies. When all the results were evaluated, it was concluded that EAL can be used in the removal of CRV dye from aqueous solutions.

___

  • Amin, M.T., Alazba, A.A., and Shafiq, M. (2021). Successful Application of Eucalyptus Camdulensis Biochar in the Batch Adsorption of Crystal Violet and Methylene Blue Dyes From Aqueous Solution. Sustainability, 13(7), 3600. https://doi.org/10.3390/su13073600
  • Bayram, O., Köksal, E., Göde, F., ve Pehlivan, E. (2022). Decolorization of Water Through Removal of Methylene Blue and Malachite Green on Biodegradable Magnetic Bauhinia Variagata Fruits. International Journal of Phytoremediation, 24(3), 311-323. https://doi.org/10.1080/15226514.2021.1937931
  • Du, C., Song, Y., Shi, S., Jiang, B., Yang, J., and Xiao, S. (2020). Preparation and Characterization of a Novel Fe3O4-Graphene-Biochar Composite for Crystal Violet Adsorption. Science of the Total Environment, 711, 134662. https://doi.org/10.1016/j.scitotenv.2019.134662
  • Dubinin, M.M. (1947). The Equation of the Characteristic Curve of Activated Charcoal. Dokl. Akad. Nauk. SSSR. 55,327-329.
  • Farzaei, M.H., Bahramsoltani, R., Abbasabadi, Z., and Rahimi, R. (2015). A Comprehensive Review on Phytochemical and Pharmacological Aspects of Elaeagnus angustifolia L. Journal of Pharmacy and Pharmacology, 67(11), 1467-1480. https://doi.org/10.1111/jphp.12442
  • Freundlich, H. (1907). Über Die Adsorption in Lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
  • Gholivand, M.B., Yamini, Y., Dayeni, M., Seidi, S., and Tahmasebi, E. (2015). Adsorptive Removal of Alizarin Red-S and Alizarin Yellow GG from Aqueous Solutions Using Polypyrrole-Coated Magnetic Nanoparticles. Journal of Environmental Chemical Engineering, 3(1), 529-540. https://doi.org/10.1016/j.jece.2015.01.011
  • Kamal, N.M., Ridha, N.A.S., Rusin, L.A., and Hussein, M.A. (2018). Removal of Alizarin Yellow Dye From Aqueous Solution by Adsorption on the Pomegranate Crusts. IOP Conference Series: Materials Science and Engineering 454(1), 012122). https://doi.org/10.1088/1757-899X/454/1/012122
  • Kaya, N., and Uzun, Z.Y. (2020). Investigation of Effectiveness of Pyrolysis Products on Removal of Alizarin Yellow GG from Aqueous Solution: A Comparative Study with Commercial Activated Carbon. Water Science and Technology, 81(6), 1191-1208. https://doi.org/10.2166/wst.2020.213
  • Khan, F.A., Ahad, A., Shah, S.S., and Farooqui, M. (2021). Adsorption of Crystal Violet Dye Using Platanus Orientalis (Chinar tree) Leaf Powder and its Biochar: Equilibrium, Kinetics and Thermodynamics Study. International Journal of Environmental Analytical Chemistry, 1-21. https://doi.org/10.1080/03067319.2021.1931854
  • Kyi, P.P., Quansah, J.O., Lee, C.G., Moon, J.K., and Park, S.J. (2020). The Removal of Crystal Violet From Textile Wastewater Using Palm Kernel Shell-Derived Biochar. Applied Sciences, 10(7), 2251. https://doi.org/10.3390/app10072251
  • Langmuir, I. (1916). The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221-2295.
  • Missau, J., Bertuol, D.A., and Tanabe, E.H. (2021). Highly Efficient Adsorbent for Removal of Crystal Violet Dye From Aqueous Solution by CaAl/LDH Supported on Biochar. Applied Clay Science, 214, 106297. https://doi.org/10.1016/j.clay.2021.106297
  • Moreira, M.T., Noya, I., and Feijoo, G. (2017). The Prospective Use of Biochar as Adsorption Matrix–A Review From a Lifecycle Perspective. Bioresource Technology, 246, 135-141. https://doi.org/10.1016/j.biortech.2017.08.041
  • Saniya, A., Sathya, K., Nagarajan, K., Yogesh, M., Jayalakshmi, H., Praveena, P., and Bharathi, S. (2020). Modelling of the Removal of Crystal Violet Dye From Textile Effluent Using Murraya Koenigii Stem Biochar. Desal. Water Treat, 203, 356-365. https://doi.org/10.5004/dwt.2020.26191
  • Scatchard, G.D. (1949). The Attractions of Proteins for Small Molecules and Ions. Ann. NY Acad. Sci., 51, 660-672.
  • Şahin, G., ve Altuntaş, E. (2018). Kuş İğdesi Meyvesinin Fiziko-mekanik, Renk ve Kimyasal Özellikleri. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 7(1), 1-11.
  • Temkin, M.J., and Pyzhev, V. 1940. Recent Modifications to Langmuir isotherms.
  • Vyavahare, G., Jadhav, P., Jadhav, J., Patil, R., Aware, C., Patil, D., Gophaned, A., Yang, Y.H., and Gurav, R. (2019). Strategies for Crystal Violet Dye Sorption on Biochar Derived from Mango Leaves and Evaluation of Residual Dye Toxicity. Journal of Cleaner Production, 207, 296-305. https://doi.org/10.1016/j.jclepro.2018.09.193
  • Wathukarage, A., Herath, I., Iqbal, M.C.M., and Vithanage, M. (2019). Mechanistic Understanding of Crystal Violet Dye Sorption by Woody Biochar: Implications for Wastewater Treatment. Environmental Geochemistry and Health, 41(4), 1647-1661. https://doi.org/10.1007/s10653-017-0013-8
  • Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S., and Gao, B. (2020). Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere, 252, 126539. https://doi.org/10.1016/j.chemosphere.2020.126539
  • Yi, Y., Tu, G., Ying, G., Fang, Z., and Tsang, E.P. (2021). Magnetic Biochar Derived from Rice Straw and Stainless Steel Pickling Waste Liquor for Highly Efficient Adsorption of Crystal Violet. Bioresource Technology, 341, 125743. https://doi.org/10.1016/j.biortech.2021.125743
  • Zhang, A., Li, X., Xing, J., and Xu, G. (2020. Adsorption of Potentially Toxic Elements in Water by Modified Biochar: A Review. Journal of Environmental Chemical Engineering, 8(4), 104196. https://doi.org/10.1016/j.jece.2020.104196
  • Zubair, M., Mu’azu, N.D., Jarrah, N., Blaisi, N.I., Aziz, H.A., and Al-Harthi, M. (2020). Adsorption Behavior and Mechanism of Methylene Blue, Crystal Violet, Eriochrome Black T, and Methyl Orange Dyes onto Biochar-Derived Date Palm Fronds Waste Produced at Different Pyrolysis Conditions. Water, Air, & Soil Pollution, 231(5), 1-19. https://doi.org/10.1007/s11270-020-04595-x
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -
Sayıdaki Diğer Makaleler

Kür Koşullarının Çimento Bulamacı Emdirilmiş Lifli Betonun (SIFCON) Kırılma Enerjisi ve Geçirimlilik Özelliklerine Etkileri

Fatih ÖZALP

Tarım ve Mera Alanlarında Rüzgâr ve Güneş Enerji Sistemleri Kurulması Hakkında Değerlendirmeler

Emre BIÇAKÇI, Cahit BALABANLI, Emrah ACAR

Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus

Serap AYAZ SEYHAN, Dilek BİLGİÇ ALKAYA

Türkiye’nin Bingöl ili Bal Arı Kolonilerinde Deforme kanat virüsü ve Kronik arı felci virüsü’nün Prevalansı

Adnan BALKAYA, Abdullah GÜLLER, Mustafa USTA, Zeynelabidin KURT

The Effects of Exogenous Salicylic Acid and Strigolactone Applications on Seedling Growth and Antioxidant Activity in Tomato Seedlings Under Short-Term Drought Stress

Gamze BALTACIER, Sevgi DONAT, Okan ACAR

The Complex-type Narayana-Fibonacci Numbers

Yeşim AKÜZÜM

Wharton Jel Kaynaklı Eksozom İzolasyonu: Metot Karşılaştırma Çalışması

Dilek KAAN

Enhancement of Strawberry Marmalade with Crab Apple (Malus floribunda) Anthocyanins

Ayca GÜLHAN, Hacer ÇOKLAR, Mehmet AKBULUT

Akdeniz – Güneydoğu Anadolu Geçit Kuşağı Koşullarına Uygun Hargreaves Modeli Solar Radyasyon Tahmin Eşitliğinin Geliştirilmesi ve Test Edilmesi

Selçuk USTA, Serpil GENÇOĞLAN, Cafer GENÇOĞLAN

Bazı Bakteriyel Yaş Çürüklük Etmenlerine Karşı Saturaje hortensis L. Uçucu Yağının Antibakteriyel Etkisi

Nasibe TEKİNER, Fatih DADAŞOĞLU, Recep KOTAN