The Effects of Exogenous Salicylic Acid and Strigolactone Applications on Seedling Growth and Antioxidant Activity in Tomato Seedlings Under Short-Term Drought Stress

The Effects of Exogenous Salicylic Acid and Strigolactone Applications on Seedling Growth and Antioxidant Activity in Tomato Seedlings Under Short-Term Drought Stress

Drought is the main abiotic stress factor that negatively affects the growth, development, and yield of plants. Salicylic acid (SA) is a plant growth regulator associated with stress tolerance in plants. Exogenous application of SA prevents against stress dependent damage. Strigolactones (SLs) are another phytohormone in plants, they are known to positively affect plant growth with exogenous applications due to their potential to stimulate the tolerance system of plants under stress conditions. The aim of this study is determine to SA and GR24 effects on the negative impacts of drought stress on tomato “Full F1” seedlings, which is the most preferred commercial variety by professional farmers in Çanakkale (Turkey), based on physiological [(shoot-root length, biomass, relative water content (RWC), specific leaf area (SLA), total chlorophyll content (SPAD)] and biochemical parameters [Total protein amount, glutathione reductase activity (GR), catalase activity (CAT), peroxidase activity (POX), ascorbate peroxidase activity (APX), hydrogen peroxide amount (H2O2), lipid peroxidation amount (TBARS)]. Fourty-five days old seedlings kept five days for acclimation, then the seedlings were treated with exogenous GR24 (0.015 mM) and SA (0.1 mM) applications. According to our results, Full F1 tomato variety was adversely affected by short-term drought stress. However, especially SA+GR24 application reduced lipid peroxidation by regulating antioxidant capacity and increased drought tolerance of this cultivar. In this context, it can be said that the combined use of these phytohormones can be used to protect the Full F1 tomato variety from drought stress damage.

___

  • Bergmeyer, N. (1970). Methoden der Enzymatichen Analyses. Akademia Verlag, Berlin, 1:636-647.
  • Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1-2):248-254.
  • Çelik, Ö., Ayan, A. & Atak, Ç. (2017). Enzymatic and Non-enzymatic Comparison of Two Different Industrial Tomato (Solanum lycopersicum) Varieties Against Drought Stress. Botanical Studies, 58(1), 1-13.
  • Chakma, R., Biswas, A., Saekong, P., Ullah, H. & Datta, A. (2021). Foliar Application and Seed Priming of Salicylic Acid Affect Growth, Fruit Yield, and Quality of Grape Tomato Under Drought Stress. Scientia Horticulturae, 280: 109904.
  • Cheeseman, J. M. (2006). Hydrogen Peroxide Concentrations in Leaves Under Natural Conditions. Journal of Experimental Botany, 57: 2435–44.
  • Chi, C., Xu, X., Wang, M., Zhang, H., Fang, P., Zhou, J. & Yu, J. (2021). Strigolactones Positively Regulate Abscisic Acid-Dependent Heat and Cold Tolerance in Tomato. Horticulture Research, 8.
  • Faizan, M., Faraz, A., Sami, F., Siddiqui, H., Yusuf, M., Gruszka, D. & Hayat, S. (2020). Role of Strigolactones: Signalling and Crosstalk with Other Phytohormones. Open Life Sciences, 15(1): 217-228.
  • FAO, 2020. Food and Agriculture Organization of the United Nations, https://www.fao.org/faostat/en/#data/QCL (Date of access: 19 April 2022).
  • Foyer, C. H. & Halliwell, B. (1976). Presence of Glutathione and Glutathione Reductase in Chloroplasts: A Proposed Role in Ascorbic Acid Metabolism. Planta, 133: 21-25.
  • Gao, Z., Bao, Y., Wang, Z., Sun, X., Zhao, T. & Xu, X. (2022). Gene Silencing of SLZF57 Reduces Drought Stress Tolerance in Tomato. Plant Cell, Tissue and Organ Culture, 1-8.
  • Gill, S. S. & Tuteja, N. (2010). Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiology and Biochemistry, 48(12): 909-930.
  • Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A. & Fotopoulos, V. (2020). Reactive Oxygen Species and Antioxidant Defense in Plants Under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 9(8): 681.
  • Hoagland, D. R. & Arnon, D. I. (1950). The Water-Culture Method for Growing Plants Without Soil. In Circular. California Agricultural Experiment Station, 347: 32.
  • Ilakiya, T., Premalakshmi, V., Arumugam, T. & Sivakumar, T. (2022). Variability Analysis in Tomato (Solanum lycopersicum L.) Crosses Under Drought Stress. Journal of Applied and Natural Science, 14(SI): 49-52.
  • Jahan, M. S., Wang, Y., Shu, S., Zhong, M., Chen, Z., Wu, J. & Guo, S. (2019). Exogenous Salicylic Acid Increases the Heat Tolerance in Tomato (Solanum lycopersicum L.) by Enhancing Photosynthesis Efficiency and Improving Antioxidant Defense System Through Scavenging of Reactive Oxygen Species. Scientia Horticulturae, 247: 421-429.
  • Jayakannan, M., Bose, J., Babourina, O., Rengel, Z. & Shabala, S. (2015). Salicylic Acid in Plant Salinity Stress Signalling and Tolerance. Plant Growth Regulation, 76(1): 25-40.
  • Jogawat, A., Yadav, B., Lakra, N., Singh, A. K. & Narayan, O. P. (2021). Crosstalk Between Phytohormones and Secondary Metabolites in the Drought Stress Tolerance of Crop Plants: A review. Physiologia Plantarum, 172(2): 1106-1132.
  • Kanner, J. & Kinsella, J. E. (1983). Lipid Deterioration: β‐Carotene Destruction and Oxygen Evolution in a System Containing Lactoperoxidase, Hydrogen Peroxide and Halides. Lipids, 18(3): 198-203.
  • Li, R., Liu, C., Zhao, R., Wang, L., Chen, L., Yu, W. & Shen, L. (2019). CRISPR/Cas9-Mediated SlNPR1 Mutagenesis Reduces Tomato Plant Drought Tolerance. Plant Biology, 19(1): 1-13.
  • Liu, H., Li, C., Yan, M., Zhao, Z., Huang, P., Wei, L. & Liao, W. (2022). Strigolactone is Involved in Nitric Oxide-Enhanced the Salt Resistance in Tomato Seedlings. Journal of Plant Research, 135(2): 337-350.
  • Lobato, A. K. D. S., Barbosa, M. A. M., Alsahli, A. A., Lima, E. J. A. & Silva, B. R. S. D. (2021). Exogenous Salicylic Acid Alleviates the Negative Impacts on Production Components, Biomass and Gas Exchange in Tomato Plants under Water Deficit Improving Redox Status and Anatomical Responses. Physiologia Plantarum, 172(2): 869-884.
  • Lu, T., Yu, H., Li, Q., Chai, L. & Jiang, W. (2019). Improving Plant Growth and Alleviating Photosynthetic Inhibition and Oxidative Stress from Low-Light Stress with Exogenous GR24 in Tomato (Solanum lycopersicum L.) Seedlings. Frontiers in Plant Science, 10: 490.
  • Madhava, R. K. V. & Sresty, T. V. S. (2000). Antioxidative Parameters in the Seedlings of Pigeonpea (Cajanus cajan L. Millspaugh) in Response to Zn and Ni Stresses. Plant Science, 157: 113-128.
  • Matysiak, K., Siatkowski, I., Kierzek, R., Kowalska, J. & Krawczyk, R. (2020). Effect of Foliar Applied Acetylsalicilic Acid on Wheat (Triticum aestivum L.) under Field Conditions. Agronomy, 10(12): 1918.
  • Mimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B. & Ahmed, H. B. (2016). Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects on Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters. Omics: A Journal of Integrative Biology, 20(3): 180-190.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M. & Fang, Y. (2019). Alleviation of Drought Stress in Grapevine by Foliar-Applied Strigolactones. Plant Physiology and Biochemistry, 135: 99-110.
  • Mubarik, M. S., Khan, S. H., Sajjad, M., Raza, A., Hafeez, M. B., Yasmeen, T. & Arif, M. S. (2021). A Manipulative Interplay Between Positive and Negative Regulators of Phytohormones: A Way Forward for Improving Drought Tolerance in Plants. Physiologia Plantarum, 172(2): 1269-1290.
  • Nakano, Y. & Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts Plant. Cell Physiology, 22(3): 867-880.
  • Nguy, T. M., Tran, T. T. & Tran, H. T. (2021). Effects of Drought Stress on Shoot Development of Tomato (Solanum lycopersicum L.). Science and Technology Development Journal-Natural Sciences, 5(2): 1208-1215.
  • Noreen, S., Fatima, K., Athar, H. U. R., Ahmad, S. & Hussain, K. (2017). Enhancement of Physio-Biochemical Parameters of Wheat Through Exogenous Application of Salicylic Acid under Drought Stress. Journal of Animal and Plant Sciences, 27(1): 153-163.
  • Peryea, F. J. & Kammereck, R. (1997). Use of Minolta SPAD‐502 Chlorophyll Meter to Quantify the Effectiveness of Mid‐Summer Trunk İnjection of Iron on Chlorotic Pear Trees. Journal of Plant Nutrition, 20(11): 1457-1463.
  • Rhaman, M. S., Imran, S., Rauf, F., Khatun, M., Baskin, C. C., Murata, Y. & Hasanuzzaman, M. (2020). Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. Plants, 10(1): 37.
  • Salvi, P., Manna, M., Kaur, H., Thakur, T., Gandass, N., Bhatt, D. & Muthamilarasan, M. (2021). Phytohormone Signaling and Crosstalk in Regulating Drought Stress Response in Plants. Plant Cell Reports, 40(8): 1305-1329.
  • Sattar, A., Ul-Allah, S., Ijaz, M., Sher, A., Butt, M., Abbas, T. & Alharbi, S. A. (2021). Exogenous Application of Strigolactone Alleviates Drought Stress in Maize Seedlings by Regulating the Physiological and Antioxidants Defense Mechanisms. Cereal Research Communications, 1-10.
  • Sedaghat, M., Emam, Y., Mokhtassi-Bidgoli, A., Hazrati, S., Lovisolo, C., Visentin, I. & Tahmasebi-Sarvestani, Z. (2021). The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. Plants, 10(6): 1223.
  • Sedaghat, M., Tahmasebi-Sarvestani, Z., Emam, Y. & Mokhtassi-Bidgoli, A. (2017). Physiological and Antioxidant Responses of Winter Wheat Cultivars to Strigolactone and Salicylic Acid in Drought. Plant Physiology and Biochemistry, 119: 59-69.
  • Smart, R. E. & Bingham, G. E. (1974). Rapid Estimates of Relative Water Content. Plant Physiology, 53(2):258 260.
  • IAEPD, 2021. Institute of Agricultural Economics and Policy Development, https://l24.im/oE4kZq (Date of access: 19 April 2022).
  • TSI, 2020. Turkish Statistical Institute, https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (Date of access: 19 April 2022).
  • Van Ha, C., Leyva-González, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y. & Tran, L. S. P. (2014). Positive Regulatory Role of Strigolactone in Plant Responses to Drought and Salt Stress. Proceedings of the National Academy of Sciences, 111(2): 851-856.
  • Visentin, I., Pagliarani, C., Deva, E., Caracci, A., Turečková, V., Novák, O. & Cardinale, F. (2020). A Novel Strigolactone‐miR156 Module Controls Stomatal Behaviour During Drought Recovery. Plant, Cell and Environment, 43(7): 1613-1624.
  • Wani, A. B., Chadar, H., Wani, A. H., Singh, S. & Upadhyay, N. (2017). Salicylic Acid to Decrease Plant Stress. Environmental Chemistry Letters,15: 101–123.
  • Wilson, P. J., Thompson, K. E. N. & Hodgson, J. G. (1999). Specific Leaf Area and Leaf Dry Matter Content as Alternative Predictors of Plant Strategies. The New Phytologist, 143(1): 155-162.
  • Xie, X., Yoneyama, K. & Yoneyama, K. (2010). The Strigolactone Story. Annual Review of Phytopathology, 48: 93-117.
  • Yang, Y., Gu, M., Chen, J., Zhang, R., Liu, Z., Shi, Y. & Wang, L. (2022). Comparative Transcriptomes Reveal the Mitigation Effect of GR24 in Alfalfa under Drought Stress. Journal of Plant Growth Regulation, 1-12.
  • Yanik, F., Aytürk, Ö., Çetinbaş-Genç, A. & Vardar, F. (2018). Salicylic Acid-Induced Germination, Biochemical and Developmental Alterations in Rye (Secale cereale L.). Acta Botanica Croatica, 77(1): 45-50.
  • Zhang, Z., Cao, B., Gao, S. & Xu, K. (2019). Grafting Improves Tomato Drought Tolerance Through Enhancing Photosynthetic Capacity and Reducing ROS Accumulation. Protoplasma, 256(4): 1013-1024.
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -
Sayıdaki Diğer Makaleler

The Effects of Different Gamma-Ray Doses on Safflower (Carthamus Tinctorius L.) Varieties on Agricultural Features Observed in M1 and M2 Plants

Hümeyra YAMAN, Nilgün BAYRAKTAR

3,5-Di-Tert-Bütil-2-Hidroksibenzaldehit Bileşiğinin Kimyasal Aktivite ve Spektroskopik Çalışmaları

Enis GÜZEL, Mustafa MACİT, Ebru ERGÜZELOĞLU, Metin YAVUZ

Türkiye’nin Bingöl ili Bal Arı Kolonilerinde Deforme kanat virüsü ve Kronik arı felci virüsü’nün Prevalansı

Adnan BALKAYA, Abdullah GÜLLER, Mustafa USTA, Zeynelabidin KURT

Uçucu Yağlar İçeren Kitosan Bazlı Filmlerin Antimikrobiyal Aktivitelerinin İncelenmesi

Sevim Feyza ERDOĞMUŞ, Özlem ERDAL ALTINTAŞ

Mikro İnsansız Hava Aracı İçin Batarya Tüketim Modelinin Elde Edilmesi

Serkan ÇAŞKA, Barış GÖKÇE

Parsel Sınır Komşuluğu İlişkilerinin Bitki Deseni Oluşumuna Etkisinin Farklı Yöntemlerle Belirlenmesi: Mustafakemalpaşa Örneği

Ali Kaan YETİK, Serhat DÖNMEZ, Serife AKKAYA

Karışım Herbisitlerin (Halauxifen methyl+Pyroxsulam+Cloquintocet asit) In Vivo Toksisitesi: Zebra Balığı Embriyo ve Larva Modeli

Ekrem SULUKAN, Mine KÖKTÜRK

Evaluation of an Edibleİinsect (Locusta migratoria) as a Substrate for Microbial β-fructofuranosidase Production

Özden CANLI TAŞAR, Gani Erhan TAŞAR

Evaluation of Different DNA İsolation Techniques in Honey, Pollen And Propolis Samples Belonging to Çankırı Province

Ebru DERELLİ TÜFEKÇİ

Aksaz Sulak Alanının Bentik Diyatome Topluluğu ve İndekslerine Göre Ekolojik Değerlendirmesi

Fatih GÜMÜŞ