4-Piridin Boronik Asit Katyonu ve $left[Pd{left(S_2C_2O_2right)}_2right]$ Anyonu İçeren Yeni Bileşiğin Sentezi veKristal Yapısı

Bu çalışmada, yeni bileşik $[HNC_5H_4B(OH)(OCH_3)-4]_2$ [Pd$(S_2C_2O_2)_2)$][Pd$(S_2C_2O_2)_2)$]sentezlendi ve kristalyapısı tek kristal X-ışını kırınım yöntemiyle belirlendi. Bileşik, monoklinik kristal sisteminde P21/nuzay grubunda a=9.1907 Å, b=11.481 Å, c=11.107 Å, α= 90°, β =97.97°, γ =90° ve Z=2 birim hücreparametrelerinde kristallendi. Bileşiğin kristal yapısında bir $left{{left[HNC_5H_4Bleft(OHright)left(OCH_3right)-4right]}_2right}^{2+}$ katyonu vebir [$left[Pd{left(S_2C_2O_2right)}_2right]^{2-}$ anyon molekülü bulunmaktadır. İnversiyon merkezinde bulunan PdII iyonu dörtkoordinasyonludur ve hafifçe bozulmuş kare düzlem geometriye sahiptir. Kristal yapıda, NH⋯O veOH⋯O ve CH⋯O hidrojen bağları anyon ve katyon moleküllerini bir arada tutmaktadır. Anyon vekatyon moleküllerinin 010 yönünde ikili vida ekseni ve 010 yönüne dik kayma düzlemi simetrisi iledizilmesi üç boyutlu bir ağ oluşmaktadır. Bu hidrojen bağlı ağ, bc düzleminde a ekseni boyunca istiflenir

Synthesis and Crystal Structure of New Compound Containing 4-Pyridine Boronic Acid Cation and $left[Pd{left(S_2C_2O_2right)}_2right]$ Anion

In this work, new compound $[HNC_5H_4B(OH)(OCH_3)-4]_2$ [Pd$(S_2C_2O_2)_2)$] was synthesizedand its crystal structure was determined by single crystal X-ray diffraction method. The compoundcrystallized in the monoclinic crystal system in the P21/n space group at a = 9.1907 Å, b = 11.481 Å, c= 11.107 Å, α = 90°, β = 97.97°, γ = 90° and Z = 2 unit cell parameters. The crystalline structure of the compound contains a $left{{left[HNC_5H_4Bleft(OHright)left(OCH_3right)-4right]}_2right}^{2+}$ cation and a $left[Pd{left(S_2C_2O_2right)}_2right]^{2-}$ anion molecule. ThePdII ion in the inversion center is four-coordinated and has a slightly distorted square-plane geometry.In the crystal structure, NH⋯O and OH⋯O and CH⋯O hydrogen bonds hold anion and cationmolecules together. A three-dimensional structure is formed when anion and cation molecules arearranged with a twofold screw axis in the 010 direction and a shear plane perpendicular to the 010 direction. This hydrogen-bonded network stacked along an axis in the bc plane.

___

  • Brooks WLA and Sumerlin BS, 2016. Synthesis and Applications of Boronic Acid-Containing Polymers: From Materials to Medicine. Chemical Reviews, 116:1375–1397.
  • Çetiner H, Şenol FF, Düzer S, 2020. Klinik Araştırma Akut Diffüz Eksternal Otit Tedavisinde Borik Asidin ve Deksametazon- Siprofloksasin Kombinasyonunun İyileşmeye ve Mikrobiyal Flora Üzerine Etkisi. Fırat Tıp Dergisi, 25:219–223.
  • Coban MB, Erkarslan U, Oylumluoglu G, Aygun M and Kara H, 2016. Hydrothermal synthesis, crystal structure and Photoluminescent properties; 3D Holmium(III) coordination polymer. Inorganica Chimica Acta, 447: 87–91.
  • Coban MB, Kocak C, Kara H, Aygun M and Amjad A, 2017. Magnetic properties and sensitized visible and NIR luminescence of $Dy^{III}$ and $Eu^{III}$ coordination polymers by energy transfer antenna ligands. Molecular Crystals and Liquid Crystals, 648:202–215.
  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, 2009. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. Journal of Applied Crystallography, 42: 339–341.
  • Donmez A, Oylumluoglu G, Coban MB, Kocak C, Aygun M and Kara H, 2017. Ferromagnetic interactions in new double end-on-azide-bridged dinuclear Ni (II) complex: Synthesis, crystal structures, magnetic and photoluminescence properties. Journal Molecular Structure, 1149:569–575.
  • Erkarslan U, Oylumluoglu G, Coban MB, Ozturk E and Kara H, 2016. Cyanide-bridged trinuclear $Mn^{III}$ – $Fe^{III}$ assembly: Crystal structure, magnetic and photoluminescence behavior. Inorganica Chimica Acta, 445: 57–61.
  • Erkarslan U, Donmez A, Kara H, Aygun M and Coban MB, 2018. Synthesis, Structure and Photoluminescence Performance of a New Er3+ Cluster-Based 2D Coordination Polymer. Journal of Cluster Science, 29: 1177–1183.
  • Fujita N, Shinkai S and James TD, 2008. Boronic Acids in Molecular Self‐Assembly. Chemistry An Asian Journal, 3:1076–1091.
  • Georgiou I, Ilyashenko G, and Whiting A, 2009. Synthesis of Aminoboronic Acids and Their Applications in Bifunctional Catalysis. Account of Chemistry Research, 42:756–768.
  • Georgiou I, Kervyn S, Rossignon A, De Leo F, Wouters J, Bruylants G and Bonifazi D, 2017. Versatile SelfAdapting Boronic Acids for H-Bond Recognition: From Discrete to Polymeric Supramolecules. Journal of American Chemical Society, 139: 2710–2727.
  • Gray AP, Platz RD, Henderson TR, Timothy CP, Takahashi K and Dretchen KL, 1988. Approaches to protection against nerve agent poisoning. (Naphthylvinyl)pyridine derivatives as potential antidotes. Journal of Medical Chemistry, 31: 807–814.
  • Hall DG, 2011. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials Second Edition, Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany.
  • Hatanaka H, Komada F, Shiono M, Mishima Y and Okumura K, 1992. Tissue Distribution of Paraboronophenylalanine Administered Orally as a Cyclodextrin Inclusion Complex to Melanoma-Bearing Hamsters. Pigment Cell Res, 5: 38–40.
  • James TD, 2016. Self and directed assembly: people and molecules. Beilstein Journal of Organic Chemistry, 12:391–405.
  • Kara H, Adams CJ, Orpen, AG, Podesta TJ, 2006. Pyridinium Boronic Acid Salts in Crystal Synthesis. New Journal of Chemisty, 30: 1461–1469.
  • Karakuş MF, Arda HN, Ikinciogullari A, Gedikli Y, Coşkun S, Balaban N and Akdogan O, 2003. Asteatosis ve kaşıntılı hastalarda dış kulak yolu mikrobiyolojisi. Kulak Burun Bogaz İhtisas Dergisi, 11:33–38.
  • Kocak C, Oylumluoglu G, Donmez A, Coban MB, Erkarslan U, Aygun M and Kara H, 2017. Crystal structure and photoluminescence properties of a new monomeric copper (II) complex: bis (3-{[(3- hydroxypropyl) imino] methyl}-4-nitrophenolato-κ3O,N,O′) copper (II). Acta Crystallographica Section C: Structural Chemistry, 73: 414–419.
  • Li B, Li T, Aliyu MA, Li ZH and Tang W, 2019. Enantioselective Palladium‐Catalyzed Cross‐Coupling of α‐Bromo Carboxamides and Aryl Boronic Acids. Angewante Chemie, ange.201905174.
  • Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M and van de Streek J, 2006. Mercury: Visualization and Analysis of Crystal Structures. Journal of Applied Crystallography, 39:453–457.
  • Marinaro WA, Schieber LJ, Munson EJ, Day VW and Stella VJ, 2012. Properties of a model aryl boronic acid and its boroxine. Journal of Pharmaceutical Sciences, 101:3190–3198.
  • Oylumluoglu G, Coban MB, Kocak C, Aygun M and Kara H, 2017. 2-and 1-D coordination polymers of Dy (III) and Ho (III) with near infrared and visible luminescence by efficient charge-transfer antenna ligand. Journal of Molecular Structure, 1146:356–364.
  • Roughley SD and Jordan AM, 2011. The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. Journal of Medicinal Chemistry, 54:3451–3479.
  • Sheldrick GM, 2008. A Short History of SHELX. Acta Crystallographica, A64: 112–122.
  • Torborg C and Beller M, 2009. Recent Applications of Palladium‐Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Advanced Synthesis and Catalysis, 351:3027–3043.
  • SAINT V7.60A, Bruker-AXS 2008. Inc. Madison, Wisconsin, USA.
  • Wu J, Kwon B, Liu W, Anslyn EV, Wang P and Kim JS, 2015. Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chemical Reviews, 115:7893–7943.
  • Yahsi Y, Gungor E, Kara H, 2015. Chlorometallate-Pyridinium Boronic Acid Salts for Crystal Engineering: Synthesis of One-, Two- and Three-Dimensional Hydrogen Bond Networks. Crystal Growth and Design, 15: 2652–2660.
  • Zhu Q, Saeed M, Song R, Sun T, Jiang C and Yu H, 2020. Dynamic covalent chemistry-regulated stimuliactivatable drug delivery systems for improved cancer therapy. Chinese Chemical Letters, 31:1051– 1059.