A Simulation-Based Accessibility Modeling Approach to Evaluate Performance of Transportation Networks by using Directness Concept and GIS

A Simulation-Based Accessibility Modeling Approach to Evaluate Performance of Transportation Networks by using Directness Concept and GIS

Ranging from simple to sophisticated, numerous types of accessibilitymeasures are found in the accessibility modeling literature which helpsto understand accessibility of people, place and transportationnetworks. Transportation network directness (reciprocal is “circuity”),which is defined as the ratio of the shortest Euclidean distance overnetwork distance between demand (origin) and destination (supply)points, could be considered as an important type of measure forunderstanding accessibility for a variety of context. Although there are several research and literature on transportationnetwork directness and accessibility modeling, the research thatintegrates transportation network directness concept into accessibilitymodeling process in such a way to provide understanding of the overallaccessibility performance of the transportation networks without losingthe local interactions is quite limited.Based on this idea, the basic aim of this research is to propose a newtransportation network directness-based accessibility modelingmethodology that could be used to test both the local and the overallaccessibility performance of transportation networks in a simple andcomparable manner by using GIS. By considering regularly producedvirtual origins and destinations on the transportation network in a“simulation” manner, the proposed methodology could produce “traveltime/distance” based accessibility measures that could operate withouta need for real time supply/demand or origin/destination data.The advantage of using a virtual regular data set instead of real time datais that; it is more simple, easy to operate and most importantly, morerealistic to understand performance of transportation networks as mostof the possible origin/destination scenarios could be represented in theproposed model. The outputs of the model could be widely used by thedecision-makers who are supposed to deal with accessibility,location/allocation, and service/catchment area related issues byseveral aims such as; to test the overall/partial performance of thetransportation networks, to understand the weakly connected parts ofthe transportation network and/or to compare the accessibilityperformance of different networks with each other.The proposed methodology is applied in 3 cities with different types oftransportation network which are Paris, FRANCE (radial network); SanFrancisco, USA (grid network) and Ankara, TURKEY (mixed network) inorder to able to demonstrate the performance and efficiency of theproposed model. The main focus of the case study is not to evaluatespecific accessibility conditions or transportation network performancein a detailed manner but to provide a methodological discussion aboutthe proposed directness based accessibility modeling process.

___

  • AultmanHall, L., Roorda, M., & Baetz, B. W. (1997). Using GIS for evaluation of neighborhood pedestrian accessibility. Journal of Urban Planning and Development-Asce, 123(1), 10-17. doi:10.1061/(Asce)0733-9488(1997)123:1(10)
  • Bagheri, N., Benwell, G. L., & Holt, A. (2006). Primary health care accessibility for rural Otago: a spatial analysis. Health Care and Informatics. Paper presented at the Health Care and Informatics Review Online.
  • Balijepalli, C., & Oppong, O. (2014). Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas. Journal of Transport Geography, 39, 145-155. doi:10.1016/j.jtrangeo.2014.06.0 25
  • Ballou, R. H., Rahardja, H., & Sakai, N. (2002). Selected country circuity factors for road travel distance estimation. Transportation Research Part a-Policy and Practice, 36(9), 843-848. doi:Pii S0965-8564(01)00044-1
  • Barthelemy, M. (2011). Spatial networks. Physics Reports-Review Section of Physics Letters, 499(1-3), 1-101. doi:10.1016/j.physrep.2010.11.002
  • Bejleri, I., Steiner, R. L., Fischman, A., & Schmucker, J. M. (2011). Using GIS to analyze the role of barriers and facilitators to walking in children's travel to school. Urban Design International, 16(1), 51-62. doi:10.1057/udi.2010.18
  • Bok, J., & Kwon, Y. (2016). Comparable Measures of Accessibility to Public Transport Using the General Transit Feed Specification. Sustainability, 8(3). doi: ARTN 22410.339 0/su8030224
  • Boscoe, F. P., Henry, K. A., & Zdeb, M. S. (2012). A Nationwide Comparison of Driving Distance Versus Straight-Line Distance to Hospitals. Professional Geographer, 64(2), 188-196. doi:10.1080/00330124.2011.583586
  • Cetin, M. (2015). Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. International Journal of Sustainable Development and World Ecology, 22(5), 420-424. doi:10.1080/13504509.2015.1061066
  • Chang, H. S., & Liao, C. H. (2011). Exploring an integrated method for measuring the relative spatial equity in public facilities in the context of urban parks. Cities, 28(5), 361-371. doi:10.1016/j.cities.2011.04.002
  • Cui, J. X., Liu, F., Hu, J., Janssens, D., Wets, G., & Cools, M. (2016). Identifying mismatch between urban travel demand and transport network services using GPS data: A case study in the fast growing Chinese city of Harbin. Neurocomputing, 181, 4-18. doi:10.1016/j.neucom.2015.0 8.100
  • Curl, A., Nelson, J. D., & Anable, J. (2015). Same question, different answer: A comparison of GIS-based journey time accessibility with self-reported measures from the National Travel Survey in England. Computers Environment and Urban Systems, 49, 86-97. doi:10.1016/j.compenvurbsys.2013.10.006
  • Delso, J., Martin, B., Ortega, E., & Otero, I. (2017). A Model for Assessing Pedestrian Corridors. Application to Vitoria- Gasteiz City (Spain). Sustainability, 9(3). doi:ARTN 43410.3390/su9030434
  • Dill, J. (2003). Measuring Network Connectivity for Bicycling and Walking. Paper presented at the TRB 2004 Annual Meeting CD-ROM.
  • Dony, C. C., Delmelle, E. M., & Delmelle, E. C. (2015). Reconceptualizing accessibility to parks in multi-modal cities: A Variable-width Floating Catchment Area (VFCA) method. Landscape and Urban Planning, 143, 90-99. doi:10.1016/j.landurbplan.2015.06.011
  • Ertugay, K., & Duzgun, S. (2011). GIS-based stochastic modeling of physical accessibility using GPS-based floating car data and Monte Carlo simulation. International Journal of Geographical Information Science, 25(9), 1491-1506. doi:10.1080/13658816.2010.528419
  • Ford, A. C., Barr, S. L., Dawson, R. J., & James, P. (2015). Transport Accessibility Analysis Using GIS: Assessing Sustainable Transport in London. Isprs International Journal of Geo- Information, 4(1), 124-149. doi:10.3390/ijgi4010124
  • Giacomin, D. J., & Levinson, D. M. (2015). Road network circuity in metropolitan areas. Environment and Planning B: Planning and Design, 42(6), 1040-1053. doi:10.1068/b130131p
  • Gibin, M., Longley, P., & Atkinson, P. (2007). Kernel density estimation and percent volume contours in general practice catchment area analysis in urban areas, In Proceedings of the GIScience research UK conference (GISRUK), Ireland: Maynooth
  • Guagliardo, M. F. (2004). Spatial accessibility of primary care: concepts, methods and challenges. Int J Health Geogr, 3(1), 3. doi:10.1186/1476-072X-3-3
  • Gutierrez, J., & Garcia-Palomares, J. C. (2008). Distance-measure impacts on the calculation of transport service areas using GIS. Environment and Planning B-Planning & Design, 35(3), 480-503. doi:10.1068/b33043
  • Hess, D. B. (2005). Access to employment for adults in poverty in the Buffalo-Niagara region. Urban Studies, 42(7), 1177- 1200. doi:10.1080/00420980500121384
  • Hess, P. M. (1997). Measures of Connectivity [Streets: Old Paradigm, New Investment]. Places, 11(2), 58-65.
  • Huang, J., & Levinson, D. M. (2015). Circuity in urban transit networks. Journal of Transport Geography, 48, 145-153. doi:10.1016/j.jtrangeo.2015.09.004
  • Kalantari, Z., Khoshkar, S., Falk, H., Cvetkovic, V., & Mortberg, U. (2017). Accessibility of Water-Related Cultural Ecosystem Services through Public Transport-A Model for Planning Support in the Stockholm Region. Sustainability, 9(3). doi:ARTN 34610.3390/su9030346
  • Kwan, M. P. (1998). Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geographical Analysis, 30, p: 191- 216
  • Laatikainen, T., Tenkanen, H., Kytta, M., & Toivonen, T. (2015). Comparing conventional and PPGIS approaches in measuring equality of access to urban aquatic environments. Landscape and Urban Planning, 144, 22-33. doi:10.1016/j.landurbplan.2015.08.004
  • Laatikainen, T. E., Piiroinen, R., Lehtinen, E., & Kytta, M. (2017). PPGIS approach for defining multimodal travel thresholds: Accessibility of popular recreation environments by the water. Applied Geography, 79, 93- 102. doi:10.1016/j.apgeog.2016.12.006
  • Lee, K., & Ryu, H. Y. (2004). Automatic circuity and accessibility extraction by road graph network and its application with high-resolution satellite imagery. Igarss 2004: Ieee International Geoscience and Remote Sensing Symposium Proceedings, Vols 1-7, 3144-3146.
  • Lee, Y., Washington, S., & Frank, L. D. (2009). Examination of relationships between urban form, household activities, and time allocation in the Atlanta Metropolitan Region. Transportation Research Part a-Policy and Practice, 43(4), 360-373. doi:10.1016/j.tra.2008.11.013
  • Lee, Y. J., Choi, J. Y., Yu, J. W., & Choi, K. (2015). Geographical Applications of Performance Measures for Transit Network Directness. Journal of Public Transportation, 18(2), 89-110.
  • Levinson, D. (2012). Network Structure and City Size. Plos One, 7(1). doi:ARTN e2972110.1371/journal.pone.0029721
  • Levinson, D., & El-Geneidy, A. (2009). The minimum circuity frontier and the journey to work. Regional Science and Urban Economics, 39(6), 732-738. doi:10.1016/j.regsciur beco.2009.07.003
  • Lin, T., Xia, J. H., Robinson, T. P., Goulias, K. G., Church, R. L., Olaru, D., . . . Han, R. L. (2014). Spatial analysis of access to and accessibility surrounding train stations: a case study of accessibility for the elderly in Perth, Western Australia. Journal of Transport Geography, 39, 111-120. doi:10.1016/j.jtrangeo.2014.06.022
  • Liu, S. X., & Zhu, X. (2004). Accessibility Analyst: an integrated GIS tool for accessibility analysis in urban transportation planning. Environment and Planning B-Planning & Design, 31(1), 105-124. doi:10.1068/b305
  • Luo, W., (2004). Using a GIS-based floating catchment method to assess areas with shortage of physicians. Health and Place, 10, 1-11
  • Luo, J. (2014). Integrating the Huff Model and Floating Catchment Area Methods to Analyze Spatial Access to Healthcare Services. Transactions in Gis, 18(3), 436-448. doi:10.1111/tgis.12096
  • Luo, J., Chen, G. P., Li, C., Xia, B. Y., Sun, X., & Chen, S. Y. (2018). Use of an E2SFCA Method to Measure and Analyse Spatial Accessibility to Medical Services for Elderly People in Wuhan, China. International Journal of Environmental Research and Public Health, 15(7). doi:ARTN 150310.3390/ijerph15071503
  • Luo, W., & Wang, F. H. (2003). Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region. Environment and Planning BPlanning & Design, 30(6), 865-884. doi:10.1068/b29120
  • Macedo, J., & Haddad, M. A. (2016). Equitable distribution of open space: Using spatial analysis to evaluate urban parks in Curitiba, Brazil. Environment and Planning B-Planning & Design, 43(6), 1096-1117. doi:10.1177/02658135156033 69
  • McGrail, M. R., & Humphreys, J. S. (2009). Measuring spatial accessibility to primary care in rural areas: Improving the effectiveness of the two-step floating catchment area method. Applied Geography, 29(4), 533-541. doi:10.1016/j.apgeog.2008.12.003
  • Monzon, A., Ortega, E., & Lopez, E. (2013). Efficiency and spatial equity impacts of high-speed rail extensions in urban areas. Cities, 30, 18-30. doi:10.1016/j.cities.2011.11.002
  • Moya-Gomez, B., & Garcia-Palomares, J. C. (2015). Working with the daily variation in infrastructure performance on territorial accessibility. The cases of Madrid and Barcelona. European Transport Research Review, 7(2). doi:ARTN 2010.1007/s12544-015-0168-2
  • Niedzielski, M. A., & Boschmann, E. E. (2014). Travel Time and Distance as Relative Accessibility in the Journey to Work. Annals of the Association of American Geographers, 104(6), 1156-1182. doi:10.1080/00045608.2014.958398
  • Papinski, D., & Scott, D. M. (2011). A GIS-based toolkit for route choice analysis. Journal of Transport Geography, 19(3), 434-442. doi:10.1016/j.jtrangeo.2010.09.009
  • Randall, T. A., & Baetz, B. W. (2001). Evaluating pedestrian connectivity for suburban sustainability. Journal of Urban Planning and Development-Asce, 127(1), 1-15. doi:Doi 10.1061/(Asce)0733-9488(2001)127:1(1)
  • Saghapour, T., Moridpour, S., & Thompson, R. G. (2017). Measuring cycling accessibility in metropolitan areas. International Journal of Sustainable Transportation, 11(5), 381-394. doi:10.1080/15568318.2016.1262927
  • Salonen, M., & Toivonen, T. (2013). Modelling travel time in urban networks: comparable measures for private car and public transport. Journal of Transport Geography, 31, 143-153. doi:10.1016/j.jtrangeo.2013.06.011
  • Scott, J., Larson, A., Jefferies, F., & Veenendaal, B. (2006), Smallarea estimates of general practice workforce shortage in rural and remote Western Australia. Australian Journal of Rural Health. 14(5), 209-213
  • Sparks, A. L., Bania, N., & Leete, L. (2011). Comparative Approaches to Measuring Food Access in Urban Areas: The Case of Portland, Oregon. Urban Studies, 48(8), 1715- 1737. doi:10.1177/0042098010375994
  • Teunissen, T., Sarmiento, O., Zuidgeest, M., & Brussel, M. (2015). Mapping Equality in Access: The Case of Bogota's Sustainable Transportation Initiatives. International Journal of Sustainable Transportation, 9(7), 457-467. doi:10.1080/15568318.2013.808388
  • Thevenin, T., Mimeur, C., Schwartz, R., & Sapet, L. (2016). Measuring one century of railway accessibility and population change in France. A historical GIS approach. Journal of Transport Geography, 56, 62-76. doi:10.1016/j.jtrangeo.2016,08.017
  • Tsou, K. W., Hung, Y. T., & Chang, Y. L. (2005). An accessibilitybased integrated measure of relative spatial equity in urban public facilities. Cities, 22(6), 424-435. doi:10.1016/j.cities.2005.07.004
  • Vadali, S., & Chandra, S. (2014). Buyer-Supplier Transport Access Measures for Industry Clusters. Journal of Applied Research and Technology, 12(5), 839-849 . Vandenbulcke, G., Steenberghen, T., & Thomas, I. (2009). Mapping accessibility in Belgium: a tool for land-use and transport planning? Journal of Transport Geography, 17(1), 39-53. doi:10.1016/j.jtrangeo.2008.04.008
  • Wei, F. (2017). Greener urbanization? Changing accessibility to parks in China. Landscape and Urban Planning, 157, 542- 552. doi:10.1016/j.landurbplan.2016.09.004
  • Wei Luo, F. W. (2003). Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region. Environment and Planning B: Planning and Design, 30, 865-884. doi:10.1068/b29120
  • Xu, W. T., Ding, Y. J., Zhou, J. P., & Li, Y. (2015). Transit accessibility measures incorporating the temporal dimension. Cities, 46, 55-66. doi:10.1016/j.cities.2015.05.002
  • Yamu, C., & Frankhauser, P. (2015). Spatial accessibility to amenities, natural areas and urban green spaces: using a multiscale, multifractal simulation model for managing urban sprawl. Environment and Planning B-Planning & Design, 42(6), 1054-1078. doi:10.1068/b130171p
  • Yang, D. H., Robert, G., Ross M. (2006). Comparing GIS-Based Methods of Measuring Spatial Accessibility to Health Services. Journal of Medical Systems, 30(1), 23-32