Utilization of Nanomaterials In Prosthetic Dental Treatment

Utilization of Nanomaterials In Prosthetic Dental Treatment

Nanomaterials in prosthetic dental treatments have garnered significant attention in the field of dentistry. These nanomaterials are utilized in various forms, such as nanoceramics, nanocomposites, nanoimplants, and antimicrobial nanoparticles. Particularly, through nanotechnology advancements, these materials offer high mechanical strength, biocompatibility, and aesthetic properties, enhancing the success of dental restorations and prosthetics. Additionally, nanoparticles with antimicrobial properties provide protection against periodontal diseases and tooth decay. The development of nanoparticle synthesis methods and techniques has enabled the use of more effective and safe materials in prosthetic dental treatments. The impact of nanotechnology in dentistry allows for the development of more successful and sustainable treatment options for patients.

___

  • 1. Oyar P. Diş Hekimliğinde Kullanılan Nanopartiküller, Kullanım Alanları Ve Biyouyumluluk. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2015; 24(1): 125-133.
  • 2. Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK. Nanotechnology in dentistry: Present and future. Journal of international oral health: JIOH. 2014; 6(1):121.
  • 3. Polini A, Bai H, Tomsia AP. Dental applications of nanostructured bioactive glass and its composites. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2013; 5(4):399-410.
  • 4. Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014; 8(1):1-16.
  • 5. Dwivedi S, Dwivedi CD, Chandra A, Sharma N. Nanotechnology boon or bane for restorative dentistry; A review. Inte J Eng Sci Inv. 2013; 2(1):1-5.
  • 6. St-Pierre L, Martel C, Crépeau H, Vargas MA. Influence of polishing systems on surface roughness of composite resins: polishability of composite resins. Operative dentistry. 2019; 44(3): E122-E132.
  • 7. Uehara LM, Ferreira I, Botelho AL, da Costa Valente ML, Dos Reis AC. Influence of β-AgVO3 nanomaterial incorporation on mechanical and microbiological properties of dental porcelain. Dental Materials. 2022; 38(6):e174-e180.
  • 8. Nayak AK, Mazumder S, Ara T, Ansari MT, Hasnain MS. Calcium fluoride-based dental nanocomposites. Applications of nanocomposite materials in dentistry. 2019: 27-45.
  • 9. Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta biomaterialia. 2020; 101:69-101.
  • 10. Tomsia AP, Lee JS, Wegst UGK, Saiz E. Nanotechnology for dental implants. International Journal of Oral & Maxillofacial Implants. 2013 Nov-Dec; 28(6):e535-46.
  • 11. Pérez RA, Delgado LM, Gutiérrez RA. Nanomaterials in dentistry: state of the art and future challenges. J Dent Res. 2014;93(11):1238-1244.
  • 12. Li Y, Jia H, Cui X, Qin W, Qin S, Wu Y, Li Y. Bending properties, compression properties, biocompatibility and bioactivity of sulfonated carbon fibers/PEEK composites with graphene oxide coating. Applied Surface Science. 2022; 575:151774.
  • 13. Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of copper nanoparticles in dentistry. Nanomaterials. 2022; 12(5):805.
  • 14. Beketova A, Theocharidou A, Tsamesidis I, Rigos AE, Pouroutzidou GK, Tzanakakis E. GC, Kontonasaki E. Sol–gel synthesis and characterization of ysz nanofillers for dental cements at different temperatures. Dentistry Journal. 2021; 9(11):128.
  • 15. Schmalz G, Hickel R, van Landuyt KL, Reichl FX. Scientific update on nanoparticles in dentistry. International dental journal. 2018; 68(5):299-305.
  • 16. Zaharia C, Duma VF, Sinescu C, Socoliuc V, Craciunescu I, Turcu RP, Negrutiu M. L. Dental adhesive interfaces reinforced with magnetic nanoparticles: Evaluation and modeling with micro-CT versus optical microscopy. Materials. 2020; 13(18):3908.
  • 17. Pourhajibagher M, Bahrami R, Bahador A. An ex vivo evaluation of physico-mechanical and anti-biofilm properties of resin-modified glass ionomer containing ultrasound waves-activated nanoparticles against Streptococcus mutans biofilm around orthodontic bands. Photodiagnosis and Photodynamic Therapy. 2022; 40:103051.
  • 18. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials. 2013; 29(2):139-156.
  • 19. Odermatt R, Par M, Mohn D, Wiedemeier DB, Attin T, Tauböck TT. Bioactivity and physico-chemical properties of dental composites functionalized with nano-vs. micro-sized bioactive glass. Journal of clinical medicine. 2020; 9(3):772.
  • 20. Ilie N, Stark K. Curing behaviour of high-viscosity bulk-fill composites. J Dent. 2014;42(8):977-85.
  • 21. Calheiros FC, Daronch M, Rueggeberg FA, Braga RR. Effect of temperature on composite polymerization stress and degree of conversion. Dental Materials. 2014; 30(6):613-618.
  • 22. Jun SK, Kim DA, Goo HJ, Lee HH. Investigation of the correlation between the different mechanical properties of resin composites. Dental materials journal 2013; 32(1):48-57.
  • 23. Cheng L, Zhang K, Weir MD, Melo MAS, Zhou XD, Xu HHK. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine. 2015;10(4):627–41.
  • 24. Melo MAS, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dental Materials. 2013; 29(2):199-210.
  • 25. AlShaafi MM. Factors affecting polymerization of resin-based composites: A literature review. Saudi Dent J. 2017;29(2):48-58.
  • 26. Unsal KA, Karaman E. Effect of additional light curing on colour stability of composite resins. International dental journal. 2022; 72(3):346-352.
  • 27. Angerame D, De Biasi M. Do nanofilled/nanohybrid composites allow for better clinical performance of direct restorations than traditional microhybrid composites? A systematic review. Operative dentistry. 2018; 43(4):E191-E209.
  • 28. Colak H, Ercan E, Hamidi MM. Shear bond strength of bulk-fill and nano-restorative materials to dentin. European journal of dentistry. 2016; 10(01):040-045.
  • 29. Tauböck TT, Tarle Z, Marovic D, Attin T. Pre-heating of high-viscosity bulk-fill resin composites: effects on shrinkage force and monomer conversion. Journal of dentistry. 2015; 43(11):1358-1364.
  • 30. Kundie F, Azhari CH, Muchtar A, Ahmad ZA. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. Journal of Physical Science. 2018; 29(1):141-165.
  • 31. El-Damanhoury HM, Platt JA. Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent. 2014;39(4):374-82.
  • 32. Vismara MVG, de Medeiros Mello LM, Di Hipólito V, González AHM, de Oliveira Graeff CF. Resin composite characterizations following a simplified protocol of accelerated aging as a function of the expiration date. journal of the mechanical behavior of biomedical materials. 2014; 35:59-69.
  • 33. Zhang Y, Kelly JR. Dental Ceramics for Restoration and Metal Veneering. Dent Clin North Am. 2017;61(4):797-819.
  • 34. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent. 2007;98(5):389-404.
  • 35. Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res. 2016;60(2):72-84.
  • 36. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-35.
  • 37. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620.
  • 38. Han J, Dong J, Zhao H, Ma Y, Yang S, Ma Y. Impact of different implant materials on osteoblast activity after oral implantation. Int J Clin Exp Med. 2019; 12(5):5389-5396.
  • 39. de Avila ED, Lima BP, Sekiya T, Torii Y, Ogawa T, Shi W, Lux R. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials. 2015;67:84-92.
  • 40. O'Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW. The roles of ions on bone regeneration. Drug Discov Today. 2018;23(4):879-890.
  • 41. Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1-15.
  • 42. Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants. Acta Biomater. 2014;10(8):3363-71.
  • 43. Albrektsson T, Wennerberg A. On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 2019; 21(1):4-7.
  • 44. Wang J, Meng F, Song W, Jin J, Ma Q, Fei D, Zhang Y. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment. International Journal of Nanomedicine, 2018; 13:4029.
  • 45. Corrêa JM, Mori M, Sanches HL, Cruz ADD, Poiate E, Poiate IAVP. Silver nanoparticles in dental biomaterials. International journal of biomaterials, 2015; 2015.
  • 46. Qi X, Jiang F, Zhou M, Zhang W, Jiang X. Graphene oxide as a promising material in dentistry and tissue regeneration: A review. Smart Materials in Medicine. 2021; 2:280-291.
  • 47. Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, Vasilev K. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials. 2014; 35(16):4601-4609.
  • 48. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52(6):1636-1653.
  • 49. Palanikumar L, Ramasamy SN, Balachandran C. Size‐dependent antimicrobial response of zinc oxide nanoparticles. IET nanobiotechnology. 2014;8(2):111-117. 50. da Silva BL, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces. 2019; 177:440-447.
HRÜ Uluslararası Diş Hekimliği ve Oral Araştırmalar Dergisi-Cover
  • Başlangıç: 2021
  • Yayıncı: Harran Üniversitesi
Sayıdaki Diğer Makaleler

ORAL MUCOUS MEMBRANE PLASMACYTOSIS. A CASE REPORT

Ali Gökalp TERZİOĞLU, Hasan HATİPOĞLU, Ayşe Nur DEĞER, Nesibe Beyza AKDEMİR

Çocuklarda Maksiller Anterior Dişlerin Kökleri ile Komşuluğundaki Anatomik Yapılar Arasındaki İlişkinin Değerlendirilmesi: Konik Işınlı Bilgisayarlı Tomografi Çalışması

Kamile Nur TOZAR, Uğur AKDAĞ, Kadir KAPLANOĞLU

Tıp Fakültesi Öğrencilerinin İnfant Oral Sağlığı Hakkındaki Bilgi Düzeyi

Ayça KURT

Zirkonya ile Güçlendirilmiş Lityum Silikat, Zirkonya ve Lityum Disilikatın Translüsensi ve Bükülme Dayanımının Karşılaştırılması

Merve UTAR, Zülfikar DEMİRTAĞ

WILLIAMS BEUREN SYNDROME, A SHORT COMMUNICATION OF A PECULIAR CASE

Michele CALLEA

Bir Türk Alt Popülasyonunda Gebelerin Ağız, Diş Sağlığı Alışkanlıkları ve Diş Tedavilerine Yaklaşımları: Bir Anket Çalışması

Katibe Tuğçe TEMUR, İsa TEMUR

Farklı Fiberle Güçlendirilmiş Kompozit Rezinler ile Tedavi Edilen Kök Kanal Tedavili Maksiller Kesici Dişlerde Oluşan Stres Dağılımının Sonlu Elemanlar Analizi ile Değerlendirilmesi

Özge SÖNMEZ UZEL, Buket AYNA

ÇOCUKLARDA GÖRÜLEN KİSTLER: VAKA SERİSİ

Elif Esra ÖZMEN, Veysel İÇEN, Tuğçe Nur ŞAHİN

Utilization of Nanomaterials In Prosthetic Dental Treatment

Hayriye Yasemin YAY KUŞÇU

Evaluation of Individual Noise Exposure in a Prosthodontic Clinic and Laboratory During the Post Covid-19 Pandemic

Hayriye Yasemin YAY KUŞÇU, Adnan KARAİBRAHİMOĞLU, Zuhal GÖRÜŞ