Geri dönüşüm işletmelerinin inşaat ve yıkım atıkları açısından performanslarının bütünleştirilmiş Swara-Edas yöntemiyle değerlendirilmesi: Türkiye örneği

Günümüzde, inşaat ve yıkım atıklarının artan miktarı nedeniyle ülke ekonomileri birçok zorlukla karşı karşıya gelmektedir. Döngüsel ekonomilerde inşaat ve yıkım atıklarının geri dönüşüm faaliyetlerinin daha önemli rol oynaması beklenmektedir. Buna paralel olarak inşaat ve yıkım atıklarının geri dönüşümü ülkelerin rekabet gücünü doğrudan etkilemektedir. Bu çalışma inşaat ve yıkım atıklarının geri dönüşüm faaliyetlerini gerçekleştiren işletmelerin performanslarını değerlendirmeyi amaçlamaktadır. İşletmelerin performanslarını değerlendirmek için kullanılan kriterler detaylı bir literatür taraması yapılarak belirlenmiştir. Çalışmanın alternatiflerini ise inşaat ve yıkım atıklarının geri dönüşüm faaliyetlerini gerçekleştiren işletmeler oluşturmaktadır. Belirlenen kriterlerin ağırlıklandırılmasında Step-Wise Weight Assesment Ratio Analysis (SWARA) kullanılmıştır. Kriter ağırlıklarının belirlenmesinin ardından inşaat ve yıkım atıklarının geri dönüşüm faaliyetlerini gerçekleştiren işletmelerin performansı Evaluation Based on Distance from Average Solution (EDAS) ile değerlendirilmiştir. Çalışmanın sonuçlarına dayalı olarak, inşaat ve yıkım atıklarının geri dönüşümünde en önemli kriter Sürdürülebilirlik olarak belirlenmiştir. Ayrıca çalışma çevresel etkiler ile inşaat ve yıkım atıklarının taşınması kriterlerinin sırasıyla diğer önemli kriterler olduğunu göstermektedir. EDAS yönteminin sonucu ise Alternatif 5 işletmesinin inşaat ve yıkım atıklarının geri dönüştürülmesi açısından en iyi performansa sahip olduğunu göstermektedir.

Performance evaluation of the recycling enterprises in terms of construction and demolition wastes by integrated SWARA-EDAS method: the case of Turkey

At the present time, national economies encounter many challenges by the reason of the increasing amount of construction and demolition waste. Recycling activities of construction and demolition wastes have been anticipated to play an important role in the circular economies. Parallel to this, the recycling of construction and demolition wastes directly affects the competitiveness of countries. This study objectives to evaluate the performances of the enterprises which carry out recycling activities of the construction and demolition wastes. The criteria which are used in the evaluation of the enterprises’ performances are specified with an elaborative literature search. Enterprises which are executer of the recycling activities of construction and demolition wastes form the alternatives of the study. Step-Wise Weight Assessment Ratio Analysis (SWARA) is used to weight the determined criteria. In the wake of the weighting of the criteria, performances of the enterprises, which executer of the recycling activities of construction and demolition wastes were evaluated by way of Evaluation Based on Distance from Average Solution (EDAS). Based on the consequences of the study, the most weighty criterion from the point of recycling of the construction and demolition wastes was specified to the sustainability. The study also indicates that the environmental effects and the transportation of construction and demolition wastes are specified as the other important criteria, respectively. As to EDAS method, consequences show that the Alternative 5 is the best firm in terms of recycling of the construction and demolition wastes performance.

___

  • Abdelhamid, M.S. (2014). Assessment of different construction and demolition waste management approaches. HBRC Journal, 10(3), 317-326. doi:10.1016/j.hbrcj.2014.01.003
  • Aggarwal, A., Choudhary, C. ve Mehrotra, D. (2018). Evaluation of smartphones in Indian market using EDAS. Procedia Computer Science, 132, 236-243. doi:10.1016/j.procs.2018.05.193
  • Ajayi, S.O. ve Oyedele, L.O. (2018). Critical design factors for minimising waste in construction projects: A structural equation modelling approach. Resources, Conservation and Recycling, 137, 302-313. doi: 10.1016/j.resconrec.2018.06.005
  • Ajayi, S.O., Oyedele, L.O., Akinade, O.O., Bilal, M., Owolabi, H.A., Alaka, H.A. ve Kadiri, K.O. (2016). Reducing waste to landfill: A need for cultural change in the UK construction industry. Journal of Building Engineering, 5, 185-193. doi: 10.1016/j.jobe.2015.12.007
  • Ajayi, S.O., Oyedele, L.O., Bilal, M., Akinade, O.O, Alaka, H.A., Owolabi, H.A. ve Kadiri, K.O. (2015). Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements. Resources, Conservation and Recycling, 102, 101-112. doi: 10.1016/j.resconrec.2015.06.001
  • Akhanova, G., Nadeem, A., Kim, J.R. ve Azhar, S. (2020). A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan. Sustainable Cities and Society, 52, 1-11. doi: 10.1016/j.scs.2019.101842
  • Akram, M., Naz, S., Feng, F. ve Shafiq, A. (2022). Assessment of hydropower plants in Pakistan:Muirhead mean-based 2-tuple linguistic t-spherical fuzzy model combining SWARA with COPRAS. Arabian Journal for Science and Engineering, 1-30. doi:10.1007/s13369-022-07081-0
  • Almutairi, K., Dehshiri, S.S.H., Dehshiri, S.J.H., Mostafaeipour, A., Issakhov, A. ve Techato, K. (2021a). A thorough investigation for development of hydrogen projects from wind energy: A case study. International Journal of Hydrogen Energy, 46(36), 18795-18815. doi:10.1016/j.ijhydene.2021.03.061
  • Almutairi, K., Dehshiri, S.S.H., Dehshiri, S.J.H., Mostafaeipour, A., Jahangiri, M. ve Techato, K. (2021b). Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study. Energy Strategy Reviews, 36, 1-17. doi: 10.1016/j.esr.2021.100684
  • Altuncu, D. ve Kasapseçkin, M.A. (2011). Management and recycling of constructional solid waste in Turkey. Procedia Engineering, 21, 1072-1077. doi:10.1016/j.proeng.2011.11.2113
  • Ansari, M. ve Ehrampoush, M.H. (2018). Quantitative and qualitative analysis of construction and demolition waste in Yazd city, Iran. Data in Brief, 21, 2622-2626. doi:10.1016/j.dib.2018.10.141
  • Arshad, H., Qasim, M., Thaheem, M.J. ve Gabriel, H.F. (2017). Quantification of material wastage in construction industry of Pakistan: An analytical relationship between building types and waste generation. Journal of Construction in Developing Countries, 22(2), 19-34. doi: 10.21315/jcdc2017.22.2.2
  • Bania, A., Zindani, D. ve Maity, S.R. (2021). Optimization of ultrasonic machining (USM) parameters on micro hole drilling of graphene oxide/pineapple leaf filler reinforced epoxy hybrid composite using evaluation based on distance from average solution (EDAS) method. Materials Today: Proceedings, 46(18), 9089-9091. doi:10.1016/j.matpr.2021.05.393
  • Bao, Z. ve Lu, W. (2021). A decision-support framework for planning construction waste recycling: A case study of Shenzhen, China. Journal of Cleaner Production, 309, 1-12. doi:10.1016/j.jclepro.2021.127449
  • Bao, Z., Lee, W.M.W. ve Lu, W. (2020). Implementing on-site construction waste recycling in Hong Kong: Barriers and facilitators. Science of the Total Environment, 747,1-11. doi:10.1016/j.scitotenv.2020.141091
  • Begum, R.A., Siwar, C., Joy Jacqueline Pereira, J.J. ve Jaafar, A. H. (2007). Implementation of waste management and minimisation in the construction industry of Malaysia. Resources, Conservation and Recycling, 51(1), 190-202. doi:10.1016/j.resconrec.2006.09.004
  • Bi, W., Lu, W., Zhao, Z., Webster, C.J. (2022). Combinatorial optimization of construction waste collection and transportation: A case study of Hong Kong. Resources, Conservation and Recycling, 179, 1-14. doi: 10.1016/j.resconrec.2021.106043
  • Bilal, M., Oyedele, L.O., Akinade, O.O., Ajayi, S.O., Alaka, H.A., Owolabi, H.A., Qadir, J., Pasha, M. ve Bello, S.A. (2016). Big data architecture for construction waste analytics (CWA): A conceptual framework. Journal of Building Engineering, 6, 144-156. doi:10.1016/j.jobe.2016.03.002
  • Blaisi, N.I. (2019). Construction and demolition waste management in Saudi Arabia: Current practice and roadmap for sustainable management. Journal of Cleaner Production, 221, 167-175. doi:10.1016/j.jclepro.2019.02.264
  • Chauhan, A., Singh, S., Dhar, A. ve Powar, S. (2021). Optimization of pineapple drying based on energy consumption, nutrient retention, and drying time through multi-criteria decision making. Journal of Cleaner Production, 292, 1-17. doi: 10.1016/j.jclepro.2021.125913
  • Chen, Z., Li, H. ve Wong, T.C.C. (2002). An application of bar-code system for reducing construction wastes. Automation in Construction, 11(5), 521-533. doi:10.1016/S0926-5805(01)00063-2
  • Chethana, I.M., Illankoon, S. ve Lu, W. (2020). Cost implications of obtaining construction waste management-related credits in green building. Waste Management, 102, 722-731. doi: 10.1016/j.wasman.2019.11.024
  • Chi, B., Lu, W., Ye, M., Bao, Z. ve Zhang, X. (2020). Construction waste minimization in green building: A comparative analysis of LEED-NC 2009 certified projects in the US and China. Journal of Cleaner Production, 256, 1-10. doi: 10.1016/j.jclepro.2020.120749
  • Chini, M., Arefi, S.L., Zolfani, S.H. ve Ustinovicius, L. (2018). Choosing a proper method for strengthening WPC beams with grooving method using SWARA-EDAS. Archives of Civil Engineering, 64(4), 161-174. doi: 10.2478/ace-2018-0050
  • Çakalı, K.R. (2022). Performance evaluation of deposit banks with financial ratios: Combined use of objective and subjective criteria weighting methods (Combined entropy-SWARA based EDAS method). Alanya Akademik Bakış, 6(2), 2351-2377. doi:10.29023/alanyaakademik.1056754
  • Çakır, E. (2018a). Bütünleşik SWARA ve EDAS yöntemi kullanarak fitness merkezlerinin değerlendirilmesi: Örnek bir uygulama. Hitit Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 11(3), 1907-1923. doi: 10.17218/hititsosbil.408916
  • Çakır, E. (2018b). Elektronik belge yönetim sistemi (EBYS) yazılımı seçiminde çok kriterli karar verme yöntemleri: Bir belediye örneği. Business Economics and Management Research Journal, 1(15), 15-30. Erişim adresi: https://dergipark.org.tr/tr/pub/bemarej/issue/38762/434887
  • Dahlbo, H., Bacher, J., Lahtinen, K., Jouttijarvi, T., Suoheimo, P., Mattila, T., Sironen, S., Myllymaa, T. ve Saramaki, K. (2015). Construction and demolition waste management - a holistic evaluation of environmental performance. Journal of Cleaner Production, 107, 333-341. doi: 10.1016/j.jclepro.2015.02.073
  • Davis, P., Aziz, F., Newaz, M.T., Sher, W. ve Simon, L. (2021). The classification of construction waste material using a deep convolutional neural network. Automation in Construction, 122, 1-17. doi: 10.1016/j.autcon.2020.103481
  • Dehshiri, S.S.H (2022). A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan. Energy, 240, 1-16. doi:10.1016/j.energy.2021.122814
  • Dehshiri, S.S.H ve Firoozabadi, B. (2022). A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern climate of Iran. Energy, 261(Part B), 1-13. doi: 10.1016/j.energy.2022.125376
  • Ding, Z., Yi, G., Tam, V.W.Y. ve Huang, T. (2016). A system dynamics-based environmental performance simulation of construction waste reduction management in China. Waste Management, 51, 130-141. doi: 10.1016/j.wasman.2016.03.001
  • Esin, T. ve Cosgun, N. (2007). A study conducted to reduce construction waste generation in Turkey. Building and Environment, 42(4), 1667-1674. doi:10.1016/j.buildenv.2006.02.008
  • Gangolells, M., Casals, M., Forcada, N. ve Macarulla, M. (2014). Analysis of the implementation of effective waste management practices in construction projects and sites. Resources, Conservation and Recycling, 93, 99-111. doi: 10.1016/j.resconrec.2014.10.006
  • Ghorabaee, M.S., Zavadskas, E.K., Olfat, L. ve Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451. doi: 10.15388/Informatica.2015.57
  • Grigoreva, L.S. ve Oleinik, P.P. (2016). Modelling of processing construction waste management system. Procedia Engineering, 153, 208-216. doi: 10.1016/j.proeng.2016.08.104
  • Guzman, J.S., Marrero, M., Delgado, M.V.M. ve De Arellano, A.R. (2009). A Spanish model for quantification and management of construction waste. Waste Management, 29(9), 2542-2548. doi: 10.1016/j.wasman.2009.05.009
  • Hao, J., Yuan, H., Liu, J., Chin, C.S. ve Lu, W. (2019). A model for assessing the economic performance of construction waste reduction. Journal of Cleaner Production, 232, 427-440. doi: 10.1016/j.jclepro.2019.05.348
  • Hassan, S.H., Ahzahar, N., Fauzi, M.A. ve Eman, J. (2012). Waste management issues in the northern region of Malaysia. Procedia - Social and Behavioral Sciences, 42, 175-181. doi:10.1016/j.sbspro.2012.04.179
  • He, L. ve Yuan, H. (2020). Investigation of construction waste recycling decisions by considering consumers’ quality perceptions. Journal of Cleaner Production, 259, 1-11. doi:10.1016/j.jclepro.2020.120928
  • Hu, R., Chen, K., Fang, W., Zheng, L. ve Xu, J. (2022). The technology-environment relationship revisited: Evidence from the impact of prefabrication on reducing construction waste. Journal of Cleaner Production, 341, 1-11. doi: 10.1016/j.jclepro.2022.130883
  • Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R. ve Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36-44. doi: 10.1016/j.resconrec.2017.09.029
  • Ibrahim, M. ve Ibrahim, M. (2016). Estimating the sustainability returns of recycling construction wastefrom building projects. Sustainable Cities and Society, 23, 78-93. doi:10.1016/j.scs.2016.03.005
  • Janani, R., Ilango, T., Meenakshi, E. ve Kumar, M.J.R. (2022). Minimization of construction waste in Chennai construction industry. Materials Today: Proceedings, 52(3), 1884-1890. doi: 10.1016/j.matpr.2021.11.515
  • Juodagalviene, B., Turskis, Z., Saparauskas, J. ve Endriukaityte, A. (2017). Integrated multi-criteria evaluation of house’s plan shape based on the EDAS and SWARA methods. Engineering structures and technologies, 9(3), 117-125. doi:10.3846/2029882X.2017.1347528
  • Kang, K., Besklubova, S., Dai, Y. ve Zhong, R.Y. (2022). Building demolition waste management through smart BIM: A case study in Hong Kong. Waste Management, 143, 69-83. doi:10.1016/j.wasman.2022.02.027
  • Kartam, N., Mutairi, N.A., Ghusain, I.A. ve Humoud, J.A. (2004). Environmental management of construction and demolition waste in Kuwait. Waste Management, 24(10), 1049-1059. doi: 10.1016/j.wasman.2004.06.003
  • Katz, A. ve Baum, H. (2011). A novel methodology to estimate the evolution of construction waste in construction sites. Waste Management, 31(2), 353-358. doi:10.1016/j.wasman.2010.01.008
  • Kısa, A.C.G. ve Ayçin, E. (2019). OECD ülkelerinin lojistik performanslarının SWARA tabanlı EDAS yöntemi ile değerlendirilmesi. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(1), 301-325. doi: 10.18074/ckuiibfd.500320
  • Kofoworola, O. F. ve Gheewala, S. H. (2009). Estimation of construction waste generation and management in Thailand. Waste Management, 29(2), 731-738. doi:10.1016/j.wasman.2008.07.004
  • Kong, L. ve Ma, B. (2020). Evaluation of environmental impact of construction waste disposal based on fuzzy set analysis. Environmental Technology and Innovation, 19, 1-13. doi:10.1016/j.eti.2020.100877
  • Lachimpadi, S. K., Pereira, J.J., Tahab, M. R. ve Mokhtara, M. (2012). Construction waste minimisation comparing conventional and precast construction (Mixed System and IBS) methods in high-rise buildings: A Malaysia case study. Resources, Conservation and Recycling, 68, 96-103. doi: 10.1016/j.resconrec.2012.08.011
  • Lai, Y.Y., Yeh, L.H., Chen, P.F., Sung, P.H. ve Lee, Y.M. (2016). Management and recycling of construction waste in Taiwan. Procedia Environmental Sciences, 35, 723-730. doi:10.1016/j.proenv.2016.07.077
  • Lam, P.T.I., Yu, A.T.W., Wu, Z. ve Poon, C.S. (2019). Methodology for upstream estimation of construction waste for new building projects. Journal of Cleaner Production, 230, 1003-1012. doi: 10.1016/j.jclepro.2019.04.183
  • Li, G., Liu, J. ve Giordano, A. (2022a). Robust optimization of construction waste disposal facility location considering uncertain factors. Journal of Cleaner Production, 353, 1-15. doi: 10.1016/j.jclepro.2022.131455
  • Li, H., Chen, Z., Yong, L. ve Kong S.C.W. (2005). Application of integrated GPS and GIS technology for reducing construction waste and improving construction efficiency. Automation in Construction, 14(3), 323-331. doi: 10.1016/j.autcon.2004.08.007
  • Li, J., Ding, Z., Mi, X. ve Wang, J. (2013). A model for estimating construction waste generation index for building project in China. Resources, Conservation and Recycling, 74, 20-26. doi: 10.1016/j.resconrec.2013.02.015
  • Li, J., Wu, Q., Wang, C.C., Du, H. ve Sun, J. (2022b). Triggering factors of construction waste reduction behavior: Evidence from contractors in Wuhan, China. Journal of Cleaner Production, 337, 1-13. doi: 10.1016/j.jclepro.2022.130396
  • Li, M. ve Yang, J. (2014). Critical factors for waste management in office building retrofit projects in Australia. Resources, Conservation and Recycling, 93, 85-98. doi:10.1016/j.resconrec.2014.10.007
  • Li, Y., Zhang, X., Ding, G. ve Feng, Z. (2016). Developing a quantitative construction waste estimation model for building construction projects. Resources, Conservation and Recycling, 106, 9-20. doi: 10.1016/j.resconrec.2015.11.001
  • Li, Y., Zheng, Y. ve Zhou, J. (2011). Source management policy of construction waste in Beijing. Procedia Environmental Sciences, 11(B), 880-885. doi: 10.1016/j.proenv.2011.12.135
  • Liu, J., Chen, Y. ve Wang, X. (2022). Factors driving waste sorting in construction projects in China. Journal of Cleaner Production, 336, 1-15. doi: 10.1016/j.jclepro.2022.130397
  • Liu, J., Yi, Y. ve Wang, X. (2020). Exploring factors influencing construction waste reduction: A structural equation modeling approach. Journal of Cleaner Production, 276, 1-16. doi:10.1016/j.jclepro.2020.123185
  • Lu, W. (2019). Big data analytics to identify illegal construction waste dumping: A Hong Kong study. Resources, Conservation and Recycling, 141, 264-272. doi:10.1016/j.resconrec.2018.10.039
  • Lu, W., Bao, Z., Lee, W.M.W., Chi, B. ve Wang, J. (2021b). An analytical framework of ‘‘zero waste construction site”: Two case studies of Shenzhen, China. Waste Management, 121, 343-353. doi: 10.1016/j.wasman.2020.12.029
  • Lu, W., Chen, C., Peng, Y. ve Liu, X. (2018). The effects of green building on construction waste minimization: Triangulating ‘big data’ with ‘thick data’. Waste Management, 79, 142-152. doi: 10.1016/j.wasman.2018.07.030
  • Lu, W., Chen, X., Ho, D.C.W. ve Wang, H. (2016). Analysis of the construction waste management performance in Hong Kong: the public and private sectors compared using big data. Journal of Cleaner Production, 112(1), 521-531. doi:10.1016/j.jclepro.2015.06.106
  • Lu, W., Chi, B., Bao, Z. ve Zetkulic, A. (2019). Evaluating the effects of green building on construction waste management: A comparative study of three green building rating systems. Building and Environment, 155, 247-256. doi: 10.1016/j.buildenv.2019.03.050
  • Lu, W., Lou, J., Webster, C., Xue, F., Bao, Z. ve Chi, B. (2021a). Estimating construction waste generation in the Greater Bay Area, China using machine learning. Waste Management, 134, 78-88. doi: 10.1016/j.wasman.2021.08.012
  • Ma, L. ve Zhang, L. (2020). Evolutionary game analysis of construction waste recycling management in China. Resources, Conservation and Recycling, 161, 1-10. doi:10.1016/j.resconrec.2020.104863
  • Ma, M., Tam, V., Le, K.N. ve Li, W. (2020). Challenges in current construction and demolition waste recycling: a China study. Waste Management, 118, 610-625. doi:10.1016/j.wasman.2020.09.030
  • Magalhaes, R.F., Danilevicz, A.M.F. ve Saurin, T.A. (2017). Reducing construction waste: A study of urban infrastructure projects. Waste Management, 67, 265-277. doi:10.1016/j.wasman.2017.05.025
  • Marzouk, M. ve Azab, S. (2014). Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics. Resources, Conservation and Recycling, 82, 41-49. doi: 10.1016/j.resconrec.2013.10.015
  • Maues, L.M.F., Nascimento, B.M.O., Lu, W. ve Xue, F. (2020). Estimating construction waste generation in residential buildings: A fuzzy set theory approach in the Brazilian Amazon. Journal of Cleaner Production, 265, 1-10. doi: 10.1016/j.jclepro.2020.121779
  • Menegaki, M. ve Damigos, D. (2018). A review on current situation and challenges of construction and demolition waste management. Current Opinion in Green and Sustainable Chemistry, 13, 8-15. doi: 10.1016/j.cogsc.2018.02.010
  • Mostafaeipour, A., Dehshiri, S.J.H., Dehshiri, S.S.H. ve Jahangiri, M. (2020). Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan. International Journal of Hydrogen Energy, 45(58), 33169-33184. doi:10.1016/j.ijhydene.2020.09.135
  • Nagapan, S., Rahman, I.A., Asmi, A. ve Adnan, N.F. (2013). Study of site's construction waste in Batu Pahat, Johor. Procedia Engineering, 53, 99-103. doi: 10.1016/j.proeng.2013.02.015
  • Ofori, G. (2015). Nature of the construction industry, its needs and its development: a review of four decades of research. Journal of Construction in Developing Countries, 20(2), 115-135. Erişim adresi: http://web.usm.my/jcdc/vol20_2_2015/JCDC%2020(2)%202015-Art.%207(115-135).pdf
  • Ogunmakinde, O.E., Egbelakin, T. ve Sher, W. (2022). Contributions of the circular economy to the UN sustainable development goals through sustainable construction. Resources, Conservation and Recycling, 178, 1-13. doi: 10.1016/j.resconrec.2021.106023
  • Oliviera, M.L.S., Izquierdo, M., Querol, X., Lieberman, R.N., Saikia, B.K. ve Silva, L.F.O. (2019). Nanoparticles from construction wastes: A problem to health and the environment. Journal of Cleaner Production, 219, 236-243. doi: 10.1016/j.jclepro.2019.02.096
  • Oluleye, B.I., Chan, D.W.M., Saka, A.B. ve Olawumi, T.O. (2022). Circular economy research on building construction and demolition waste: A review of current trends and future research directions. Journal of Cleaner Production, 357, 1-18. doi:10.1016/j.jclepro.2022.131927
  • Ortiz, O., Pasqualino, J.C. ve Castells, F. (2010). Environmental performance of construction waste: Comparing three scenarios from a case study in Catalonia, Spain. Waste Management, 30(4), 646-654. doi: 10.1016/j.wasman.2009.11.013
  • Osmani, M. (2012). Construction waste minimization in the UK: Current pressures for change and approaches. Procedia - Social and Behavioral Sciences, 40, 37-40. doi:10.1016/j.sbspro.2012.03.158
  • Pajic, V., Andrejic, M. ve Kilibarda, M. (2022). Sustainable transportation mode selection from the freight forwarder’s perspective in trading with western EU countries. Sustainable Futures, 4, 1-7. doi: 10.1016/j.sftr.2022.100090
  • Pamucar, D.,Yazdani, M., Simo, M.J.M., Padilla, R.A.A. ve Mohammed, A. (2021). Multi-criteria decision analysis towards robust service quality measurement. Expert Systems with Applications, 170, 1-17. doi: 10.1016/j.eswa.2020.114508
  • Parkes, O., Lettieri, P. ve Bogle, I.D.L. (2016). Defining a quantitative framework for evaluation and optimisation of the environmental impacts of mega-event projects. Journal of Environmental Management, 167, 236-245. doi: 10.1016/j.jenvman.2015.11.009
  • Rahman, I.A., Nagapan, S. ve Asmi, A. (2014). Initial PLS model of construction waste factors. Procedia - Social and Behavioral Sciences, 129, 469-474. doi:10.1016/j.sbspro.2014.03.702
  • Rifai, J.A. ve Amoudi, O. (2016). Understanding the key factors of construction waste in Jordan. Jordan Journal of Civil Engineering, 10(2), 244-253. Erişim adresi: https://jjce.just.edu.jo/issues/paper.php?p=3540.pdf
  • Sapuay, S.E. (2016). Construction waste-potentials and constraints. Procedia Environmental Sciences, 35, 714-722. doi: 10.1016/j.proenv.2016.07.074
  • Saygın, Z.Ö. ve Kundakcı, N. (2020). Sağlık göstergeleri açısından OECD ülkelerinin EDAS ve ARAS yöntemleri ile değerlendirilmesi. Alanya Akademik Bakış, 4(3), 911-938. doi:10.29023/alanyaakademik.664883
  • Schitea, D., Deveci, M., Iordache, M., Bilgili, K., Akyurt, I.Z. ve Iordache, I. (2019). Hydrogen mobility roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and EDAS. International Journal of Hydrogen Energy, 44(16), 8585-8600. doi:10.1016/j.ijhydene.2019.02.011
  • Sepasgozar, S.M.E., Mair, D.F., Tahmasebinia, F., Shirowzhan, S., Li, H., Richter, A., Yang, L. ve Xu, S. (2021). Waste management and possible directions of utilising digital technologies in the construction context. Journal of Cleaner Production, 324, 1-27. doi:10.1016/j.jclepro.2021.129095
  • Sobotka, A. ve Czaja, J. (2015). Analysis of the factors stimulating and conditioning application of reverse logistics in construction. Procedia Engineering, 122, 11-18. doi:10.1016/j.proeng.2015.10.002
  • Su, Y. (2020). Multi-agent evolutionary game in the recycling utilization of construction waste. Science of The Total Environment, 738, 1-10. doi: 10.1016/j.scitotenv.2020.139826
  • Swetha K.S., Tezeswi T.P. ve Kumar M.V.N.S. (2022). Implementing construction waste management in India: An extended theory of planned behaviour approach. Environmental Technology and Innovation, 27, 1-16. doi: 10.1016/j.eti.2022.102401
  • Tafesse, S., Girma, Y.E. ve Dessalegn, E. (2022). Analysis of the socio-economic and environmental impacts of construction waste and management practices. Heliyon, 8(3), 1-10. doi: 10.1016/j.heliyon.2022.e09169
  • Tam, C.M., Tam, V.W.Y. ve Tsui, W.S. (2004). Green construction assessment for environmental management in the construction industry of Hong Kong. International Journal of Project Management, 22(7), 563-571. doi: 10.1016/j.ijproman.2004.03.001
  • Udawatta, N., Zuo, J., Chiveralls, K. ve Zillante, G. (2015). Improving waste management in construction projects: An Australian study. Resources, Conservation and Recycling, 101, 73-83. doi: 10.1016/j.resconrec.2015.05.003
  • Ulutaş, A. (2019). Entropi tabanlı EDAS yöntemi ile lojistik firmalarının performans analizi. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 23, 53-66. doi:10.18092/ulikidince.458754
  • Wahi, N., Joseph, C., Tawie, R. ve Ikzau, R. (2016). Critical review on construction waste control practices: Legislative and waste management perspective. Procedia - Social and Behavioral Sciences, 224, 276-283. doi: 10.1016/j.sbspro.2016.05.460
  • Wang, J., Li, Z. ve Tam, V.W.Y. (2014). Critical factors in effective construction waste minimization at thedesign stage: A Shenzhen case study, China. Resources, Conservation and Recycling, 82, 1-7. doi: 10.1016/j.resconrec.2013.11.003
  • Wang, J., Yu, B., Tam, V.W.Y., Li, J. ve Xu, X. (2019). Critical factors affecting willingness of design units towards construction waste minimization: An empirical study in Shenzhen, China. Journal of Cleaner Production, 221, 526-535. doi: 10.1016/j.jclepro.2019.02.253
  • Wang, J., Yuan, H., Kang, X. ve Lu, W. (2010). Critical success factors for on-site sorting of construction waste: A china study. Resources, Conservation and Recycling, 54(11), 931-936. doi: 10.1016/j.resconrec.2010.01.012
  • Wu, W., Xie, L. ve Hao, J.L. (2022). An integrated trading platform for construction and demolition waste recovery in a circular economy. Sustainable Chemistry and Pharmacy, 25, 1-12. doi: 10.1016/j.scp.2022.100597
  • Wu, Z., Yu, A.T.W., Shen, L. ve Liu, G. (2014). Quantifying construction and demolition waste: An analytical review. Waste Management, 34(9), 1683-1692. doi:10.1016/j.wasman.2014.05.010
  • Xu, J., Lu, W., Ye, M., Xue, F., Zhang, X. ve Lee, B.F.P. (2020). Is the private sector more efficient? Big data analytics of construction waste management sectoral efficiency. Resources, Conservation and Recycling, 155, 1-11. doi: 10.1016/j.resconrec.2019.104674
  • Yang, Z., Xue, F. ve Lu, W. (2021). Handling missing data for construction waste management: machine learning based on aggregated waste generation behaviors. Resources, Conservation and Recycling, 175, 1-15. doi: 10.1016/j.resconrec.2021.105809
  • Ye, G., Yuan, H., Shend, L. ve Wange, H. (2012). Simulating effects of management measures on the improvement of the environmental performance of construction waste management. Resources, Conservation and Recycling, 62, 56-63. doi: 10.1016/j.resconrec.2012.01.010
  • Ying, L., Yin, Z., Guo, T. ve Zhou, J. (2011). Analysis and research of management policy of construction waste in Beijing. Procedia Environmental Sciences, 11(B), 906-911. doi:10.1016/j.proenv.2011.12.139
  • Yuan, H. (2012). A model for evaluating the social performance of construction waste management. Waste Management, 32(6), 1218-1228. doi:10.1016/j.wasman.2012.01.028
  • Yuan, H. (2013). A SWOT analysis of successful construction waste management. Journal of Cleaner Production, 39, 1-8. doi: 10.1016/j.jclepro.2012.08.016
  • Yücenur, G.N., Azakli, A.S., Bahadır, K., Tel, M.E. ve Arabacı, S.N. (2022). Prioritisation of industry 4.0 implementations in agricultural sector with SWARA/EDAS. International Journal of Sustainable Agricultural Management and Informatics, 8(3), 326-344. doi:10.1504/IJSAMI.2022.125761
  • Zaharieva, R.H., Dimitrova, E. ve Bodin, F.B. (2003). Building waste management in Bulgaria: Challenges and opportunities. Waste Management, 23(8), 749-761. doi: 10.1016/S0956-053X(03)00037-0
  • Zhang, X. ve Ahmed, R.R. (2022). A queuing system for inert construction waste management on a reverse logistics network. Automation in Construction, 137, 1-14. doi:10.1016/j.autcon.2022.104221