Vairimorpha (Nosema) Parazitinin Antimikrobiyal Peptidler Aracılığıyla Bal Arılarının Hümoral Bağışıklığına Etkileri

Arılar, dünya çapındaki tüm tarımsal türlerin büyük çoğunluğu ve yabani flora için önemli tozlayıcılardır. Son yıllarda dünyadaki arı kolonilerinin sayısında hızlı bir düşüş yaşanmıştır. Bal arıları sosyal böceklerdir, bu da onları mikrobiyal patojenler ve parazitlerin hızla yayılmasına karşı hassas hale getirir. Koloni çöküşüne yol açan tek bir nedensel ajan tanımlanamaz ve işçi arılardaki azalmayla ilgili en yaygın biyolojik etkenlerden biri parazitik microsporidia Vairimorpha (Nosema) spp., esas olarak Vairimorpha (Nosema) apis ve Vairimorpha (Nosema) ceranae, her ikisi de Apis türlerinde görülen Nosemosis hastalığından sorumludur. Vairimorpha ceranae daha yaygındır ve koloni çöküşü ile ilişkili olan arı bağışıklık tepkisi üzerinde etkilidir. Bu mikrosporidiaların immünosupresif etkisi ve kovan organizasyonun bozulması koloniyi zayıflatır ve koloni kayıplarına yol açar. Bunun da ekolojik, tarımsal ve ekonomik sonuçları oldukça fazladır. Bal arıları mikrobiyal patojenlerin zararlı etkilerini en aza indiren, doğuştan ve sonradan kazanılmış bağışıklığı içeren son derece etkili savunma mekanizmalarına sahiptirler. Bal arılarının en temel savunma sistemi olan hümoral tepki, doğuştan gelen bağışıklığın ikinci kategorisidir ve antimikrobiyal peptidler (AMP' ler) aracılık eder. Stres faktörleri ile başa çıkabilme yeteneğine sahip bal arılarının bağışıklık mekanizmalarına odaklanan araştırmalar, kolonilerin gücünü ve verimliliğini arttırmalarına yardımcı olabilir. Vairimorpha (Nosema) spp’nin arıların bağışıklık sistemi üzerindeki etkisi, karşılıklı ilişkilerini daha iyi anlamak ve etkili arı koruma yöntemleri geliştirmek için daha ayrıntılı bir şekilde anlaşılmalıdır. Bal arısı bağışıklık sistemleri çözümlendikçe, sosyal böcekler ve bağışıklık fonksiyonları arasındaki potansiyel evrimsel ilişki belirlenebilir. Böylece arı kayıplarını azaltmak için yerel alttür ve ekotipleri koruma stratejileri geliştirilebilir.

Effects of Vairimorpha (Nosema) spp. on Humoral Immunity of Honey Bees via Antimicrobial Peptides

Bees are important pollinators for the vast majority of all agricultural species and wild flora worldwide. In recent years, there has been a rapid decline in the number of bee colonies in the world. Honey bees are social insects, making them susceptible to the rapid spread of microbial pathogens and parasites. A single causative agent leading to colony collapse cannot be identified and one of the most common biological factors associated with the decline in worker bees is the parasitic microsporidia Vairimorpha (Nosema) spp., primarily Vairimorpha (Nosema) apis and Vairimorpha (Nosema) ceranae, both of which are responsible for Nosemosis in Apis species. Vairimorpha ceranae is more common and has an effect on the bee immune response associated with colony collapse. The immunosuppressive effect of these microsporidia and disruption of hive organization weaken the colony and lead to colony losses. The ecological, agricultural and economic consequences of this are quite severe. Honey bees have highly effective defense mechanisms that minimize the harmful effects of microbial pathogens, including innate and acquired immunity. The humoral response, the most basic defense system of honey bees, is the second category of innate immunity and is mediated by antimicrobial peptides (AMPs). Research focusing on the immune mechanisms of honey bees, which are capable of coping with stressors, can help colonies increase their strength and productivity. The effect of Vairimorpha (Nosema) spp on the bee immune system needs to be understood in more detail to better understand their interrelationships and develop effective bee protection methods. As honey bee immune systems are deciphered, the potential evolutionary relationship between social insects and immune functions can be determined. Thus, strategies to protect local subspecies and ecotypes can be developed to reduce bee losses.

___

  • Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., Le Conte, Y., 2010. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology. 12, 774–782.
  • Alaux, C., Folschweiller, M., McDonnell, C., Beslay, D., Cousin, M., Dussaubat, C., Le Conte, Y., 2011. Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). Journal of Invertebrate Pathology. 106, 380–385.
  • Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., Higes, M., 2009. Immune Suppression in the Honey Bee (Apis mellifera) Following Infection by Nosema ceranae (Microsporidia). Environmental Microbiology. 11, 2284–2290.
  • Aufauvre, J., Misme-Aucouturier, B., Vigues, B., Texier, C., Delbac, F., Blot, N., 2014. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One. 9, e91686.
  • Bacandritsos, N., Granato, A., Budge, G., Papanastasiou, I., Roinioti, E., Caldon, M., Falcaro, C., Gallina, A., Mutinelli, F., 2010. Sudden Deaths and Colony Population Decline in Greek Honey Bee Colonies. Journal Invertebrate Pathology. 105, 335–340.
  • Badaoui, B., Fougeroux, A., Petit, F., Anselmo, A., Gorni, C., Cucurachi, M., Cersini, A., Granato, A., Cardeti, G., Formato, G., Mutinelli, F., Giuffra, E., Williams, J., Botti, S., 2018. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae. PLoS One. 12. e0173438.
  • Bailey, L., Ball, B.V., 1991. Honey bee pathology, 2nd ed.. Academic Press, London.
  • Barribeau, S. M., Sadd, B. M., du Plessis, L., Brown, M. J. F., Buechel, S. D., Cappelle, K., Carolan, J. C., Christiaens, O., Colgan, T. J., Erler, S., Evans, J., Helbing, S., Karaus, E., Lattorff, H. M. G., Marxer, M., Meeus, I., Naepflin, K., Niu, J., Schmid-Hempel,R., Smagghe, G., Waterhouse, R. M., Yu, N., Zdobnov, E. M., Schmid-Hempel, P., 2015. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biology. 16, 83.
  • Boman, H. G., 2003. Antibacterial peptides: basic facts and emerging concepts. Journal of Internal Medicine. 254(3), 197-215.
  • Brutscher, L. M., Daughenbaugh K. F., Flenniken M. L., 2015. Antiviral defense mechanisms in honey bees. Current Opinion In Insect Science. 10,71-82.
  • Casteels, P., Ampe C., Jacobs F., Vaeck M., Tempst P., 1989. Apidaecins: antibacterial peptides from honey bees. The EMBO Journal. 8, 2387-2391.
  • Casteels, P., Ampe C., Riviere L., van Damme J., Elicone C., Fleming M., Jacobs F., Tempst P., 1990. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). European Journal of Biochemistry. 187, 381-386.
  • Casteels, P., Ampe C., Jacobs F., Tempst P., 1993. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). Journal of Biological Chemistry. 268, 7044-7054.
  • Casteels, P., Tempst P., 1994. Apidaecin-type peptide antibiotics function through a nonporeforming mechanism involving stereospecificity. Biochemical and Biophysical Research Communications. 199, 339- 345.
  • Cerenius, L., Lee, B. L., Söderhäll, K., 2008. The proPO-system: pros and cons for its role in invertebrate immunity. Trends In Immunology. 29, 263-271.
  • Chauzat, M. P., Higes, M., Martin-Hernandez, R., Meana, A., Cougoule, N., Faucon, J. P., 2007. Presence of Nosema ceranae in French honey bee colonies. Journal of Apicultural Research. 46, 127–128.
  • Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J. D., Pettis, J. S., 2012. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology. 58, 1090–1095.
  • Chaimanee, V., Pettis, J. S., Chen, Y. P., Evans, J.D., Khongphinitbunjong, K., Chantawannakul , P., 2013. Susceptibility of four different honey bee species to Nosema ceranae. Veterinary Parasitology. 193, 260–265.
  • Chen, Y., Evans, J. D., Smith, B., Pettis, J. S., 2008. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. Journal of Invertebrate Pathology. 97, 186–88.
  • Chen, Y., Evans, J. D., Zhou, L., Boncristiani, H., Kimura, K., Xiao, T., Litkowski, A. M., Pettis, J. S., 2009. Asymmetrical Coexistence of Nosema ceranae and Nosema apis in Honey Bees. Journal of Invertebrate Pathology. 101, 204–209.
  • Crailsheim, K., Riessberger-Gallé, U., 2001. Honey bee age-dependent resistance against American foulbrood. Apidologie. 32, 91-104.
  • Corradi, N., Keeling, P., 2009. Microsporidia: a journey through radical taxonomical revisions. Fungal Biology Reviews. 23, 1-8.
  • Cox-Foster, D., Schonbaum, C., Murtha, M., Cavener, D., 1990. Developmental Expression of the Glucose Dehydrogenase Gene in Drosophila Melanogaster. Genetics. 124, 873-80.
  • Danihlík, J., Aronstein, K., Petřivalský, M., 2015. Antimicrobial peptides: a key component of honey bee innate immunity. Journal of Apicultural Research. 54, 123-136.
  • Decanini, L. I., Collins A. M., Evans, J. D., 2007. Variation and heritability in immune gene expression by diseased honeybees. Journal of Heredity. 98, 195- 201.
  • Decker, H., Jaenicke, E., 2004. Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Developmental and Comparative Immunology. 28(7-8), 673-87.
  • Desneux, N., Decourtye, A., Delpuech, J. M., 2007. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annual Review Of Entomology. 52, 81–106.
  • Desai, S. D., Currie, R.W., 2016. Effects of Wintering Environment and Parasite-Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions. PLoS One. 11, e0159615.
  • Dussaubat, C., Maisonnasse, A., Alaux, C., Tchamitchan, S., Brunet, J. L., Plettner, E., Le Conte, Y., 2010. Nosema spp. infection alters pheromone production in honey bees (Apis mellifera). Journal of Chemical Ecology. 36, 522–525.
  • Dussaubat, C., Brunet, J. L., Higes, M., Colbourne, J. K., Lopez, J., Choi, J. H., Martín-Hernández, R., Botias, C., Cousin, M., McDonnell, C., Bonnet, M., Belzunces, L. P.,Moritz, R. F. A., Le Conte, Y., Alaux, C., 2012. Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One. 7, e37017.
  • Dussaubat, C., Maisonnasse, A., Crauser, D., Beslay, D., Costagliola, G., Soubeyrand, S., Kretzchmar, A., Le Conte, Y., 2013. Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. Journal of Invertabrate Pathology. 113, 42–51.
  • Dutta, R. C., Nagpal S., Salunke D. M., 2008. Functional mapping of apidaecin through secondary structure correlation. International Journal of Biochemistry and Cell Biology. 40, 1005-1015.
  • Erler, S., Moritz, R. A., 2016. Pharmacophagy and pharmacophory: mechanisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie. 47, 389–411.
  • Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., Kanost, M., Thompson, G. J., Zou, Z., Hultmark, D., 2006. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology. 15, 645–656.
  • Evans, J. D., 2006. Beepath: an ordered quantitative-PCR array for exploring honey bee immunity and disease. Journal of Invertebrate Pathology. 93, 135–139.
  • Evans, J. D., Spivak, M., 2010. Socialized medicine: Individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology. 103 (Suppl. 1), 62–72.
  • Flores, J. M., Gil-Lebrero, S., Gámiz, V., Rodríguez, M. I., Ortiz, M. A., Quiles, F. J., 2019. Effect of the Climate Change on Honey Bee Colonies in a Temperate Mediterranean Zone Assessed through Remote Hive Weight Monitoring System in Conjunction with Exhaustive Colonies Assessment. Science of The Total Environment. 653, 1111–1119.
  • Fries, I., Camazine S., 2001. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie. 32, 199-214.
  • Fries, I., Martin R., Meana, A., Garcia-Palencia, P., Higes, M., 2006. Natural infections of Nosema ceranae in European honey bees. Journal of Apicultural Research. 45, 230–233.
  • Fries, I., 2010. Nosema ceranae in European honey bees (Apis mellifera). Journal of Invertebrate Pathology. 103, 73–79.
  • Forsgren, E., Fries, I., 2010. Comparative Virulence of Nosema ceranae and Nosema apis in Individual European Honey Bees. Veterinary Parasitology. 170, 212–217.
  • Gajda, A. M., Mazur, E. D., Bober, A. M., Czopowicz, M., 2021. Nosema ceranae Interactions with Nosema apis and Black Queen Cell Virus. Agriculture. 11, 963.
  • Gätschenberger, H., Azzami, K., Tautz, J., Beier, H., 2013. Antibacterial immune competence of honey bees (Apis mellifera) is adapted to different life stages and environmental risks. PLoS One. 8(6). e66415.
  • Gillespie, J. P, Kanost, M. R, Trenczek, T., 1997. Biological mediators of insect immunity. Annual Review of Entomology. 42. 611-43.
  • Gisder, S., Schüler, V., Horchler, L. L., Groth, D., Genersch, E., 2017. Long-Term Temporal Trends of Nosema spp. Infection Prevalence in Northeast Germany: Continuous Spread of Nosema ceranae, an Emerging Pathogen of Honey Bees (Apis mellifera), but No General Replacement of Nosema apis. Frontiers In Cellular And Infection Microbiology. 7, 301.
  • Gherman, B. I., Denner, A., Bobis, O., Dezmirean, D. S., Marghitas, L. A., Schluns, H., Moritz, R. F. A., Erler, S., 2014. Pathogen-associated self-medication behavior in the honeybee Apis mellifera. Behavioral Ecology And Sociobiology. 68, 1777–1784.
  • Gliński, Z., Buczek, K., Marć, M., 2011. Zjawiska i mechanizmy odporności przeciwzakaźnej pszczoły miodnej – nowe osiągnięcia [Defense phenomena and mechanisms in honey bee: new approaches]. Życie Weterynaryjne. 86, 687-694.
  • Grassl, J., Holt, S., Cremen, N., Peso, M., Hahne, D., Baer, B., 2018. Synergistic Effects of Pathogen and Pesticide Exposure on Honey Bee (Apis mellifera) Survival and Immunity. Journal of Invertebrate Pathology. 159, 78–86.
  • Grupe, A. C., Quandt, C. A., 2020. A Growing Pandemic: A Review of Nosema Parasites in Globally Distributed Domesticated and Native Bees. PLoS Pathology, 16, e1008580.
  • Goblirsch, M., Huang, Z., Spivak, M., 2013. Physiological and Behavioral Changes in Honey Bees (Apis mellifera) Induced by Nosema ceranae Infection. PloS One. 8, e58165.
  • Goodwin, M., Ten Houten, A., Perry, J., Blackman, R., 1990. Cost benefit analysis of using fumagillin to treat nosema. New Zealand Beekeeper. 208, 11–12.
  • Gómez-Moracho, T., Durand, T., Pasquaretta, C., Heeb, P., Lihoreau, M., 2021. Artificial Diets Modulate Infection Rates by Nosema ceranae in Bumblebees. Microorganisms. 9, 158.
  • Guzman-Novoa, E., 2011. Integration biotechnologies. Genetic basis of disease resistance in the honey bee (Apis mellifera). In: Murray M-Y editor. Comprehensive biotechnology, Second ed. Elsevier. (4), 763-767.
  • Hatjina, F., Bienkowska, M., Charistos, L., Chlebo, R., Costa, C., Draˇzi´c, M. M., Filipi, J.,Gregorc, A., Ivanova, E. N., Kezi´c, N., Kopernicky, J., Kryger, P., Lodesani, M., Lokar,V., Mladenovic, M., Panasiuk, B., Petrov, P., Rai, S., Smodis Skerl, M. I., Vejsns,F., Wilde, J., 2014. A review of methods used in some European countries for assessing the quality of honey bee queens through their physical characters and the performance of their colonies. Journal of Apicultural Research. 53, 337–363.
  • Higes, M., Martín, R., Meana, A., 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of Invertebrate Pathology. 92, 93–95.
  • Higes, M., Garcia-Palencia P., Martin-Hernandez, R., Meana, A., 2007. Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology. 94, 211–217.
  • Higes, M., Martín-Hernández, R., Botías, C., Bailón, E., González, P. A., Barrios, L., Nozal, M., Bernal, J., Jiménez, J., Palencia, P., Meana, A., 2008. How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology. 10, 2659-69.
  • Higes, M., Martín-Hernández, R., García-Palencia, P., Marín, P., Meana A., 2009. Horizontal transmission of Nosema ceranae (Microsporidia) from worker honeybees to queens (Apis mellifera). Environemental Microbiology Reports. 1(6). 495-8.
  • Higes, M., Juarranz, A., Dias-Almeida, J., Lucena, S., Botías, C., Meana, A., García-Palencia, P., Martín-Hernández, R., 2013. Apoptosis in the pathogenesis of Nosema ceranae (Microsporidia: Nosematidae) in honey bees (Apis mellifera). Environemental Microbiology Reports. 5, 530–536.
  • Holt, H. L., Aronstein, K. A., Grozinger, C. M., 2013. Chronic parasitization by Nosema microsporidia causes global expression changes in core nutritional, metabolic and behavioral pathways in honey bee workers (Apis mellifera). BMC Genomics. 14, 799.
  • Huang, W., Jiang, J. H., Chen, Y.W., Wang, C. H., 2007. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie. 38, 30–37.
  • Huang, Q., Kryger, P., Le Conte, Y., Moritz, R. F. A., 2012. Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections. Journal of Invertebrate Pathology. 109, 297–302.
  • Huang, Q., Chen, Y. P., Wang, R. W., Cheng, S., Evans, J. D., 2016. Host-parasite interactions and purifying selection in a Microsporidian parasite of honey bees. PLoS One. 11, e0147549.
  • Ilyasov, R., Gaifullina, L., Saltykova, E., Poskryakov, A., Nikolenko, A., 2012. Review of the expression of antimicrobial peptide defensin in honey bees Apis mellifera L. Journal of Apicultural Science. 56, 115- 124.
  • Ilyasov, R. A., Gaifullina, L. R., Saltykova, E. S., Poskryakov, A. V., Nikolaenko, A. G., 2013. Defensins in the honeybee antiinfectious protection. Journal of Evolutionary Biochemistry and Physiology. 49, 1-9.
  • Invernizzi, C., Abud, C., Tomasco, I. H., Harriet, J., Ramallo, G., Campá, J., Katz, H., Gardiol, G., Mendoza, Y., 2009. Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. Journal of Invertebrate Pathology. 101, 150–153.
  • Jefferson, J. M., Dolstad, H. A., Sivalingam, M. D., Snow, J. W., 2013. Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One. 8, e54097.
  • Kartal, S., Tunca R. İ., Özgül, O., Karabağ, K., Koç, H., 2021. Microscopic and molecular detection of Nosema sp. in the Southwest Aegean region (Güneybatı Ege Bölgesinde Nosema Türlerinin Mikroskobik ve Moleküler Yöntemlerle Belirlenmesi. Uludağ Arıcılık Dergisi. 21, 8-20.
  • Klaudiny, J., Albert Š., Bachanová K., Kopernický J., Šimúth J., 2005. Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochemistry and Molecular Biology. 35, 11- 22.
  • Klee, J., Besana, A. M., Genersch, E., Gisder, S., Nanetti, A., Tam, D. Q., Chinh, T. X., Puerta, F., Ruz, J. M., Kryger, P., Message, D., Hatjina, F., Korpela, S., Fries, I., Paxton, R. J., 2007. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. Journal of Invertebrate Pathology. 96 (1), 1–10.
  • Kurze, C., Mayack, C., Hirche, F., Stangl, G. I., Le Conte, Y., Kryger, P., Moritz, R. F. A., 2016. Nosema spp. infections cause no energetic stress in tolerant honeybees. Parasitology Research. 115(6), 2381-8.
  • Lavine, M. D., Strand, M. R., 2002. Insect haemocytes and their role in immunity. Insect Biochemistry and Molecular Biology. 32, 1295–1309.
  • Li, W., Evans, J., Li, J., Su, S., Hamilton, M., Chen, Y., 2017. Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitology Research. 116, 1-10.
  • Li, W., Chen, Y., Cook, S.C., 2018. Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host Apis mellifera honey bees. International Journal for Parasitology. 48, 433-444.
  • Le Conte, Y., Alaux, C., Martin, J. F., Harbo, J. R., Harris, J. W., Dantec, C., Navajas, M., 2011. Social immunity in honey bees (Apis mellifera): Transcriptome analysis of varroa-hygienic behaviour. Insect Molecular Biology. 20, 399–408.
  • Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annual Review of Immunology. 25, 697-743.
  • Malone, L. A., Giacon, H. A., Newton, M. R., 1995. Comparison of the responses of some New Zealand and Australian honey bees (Apis mellifera L.) to Nosema apis Z. Apidologie. 26, 495–502.
  • Martín-Hernández, R., Botías, C., Barrios, L., Martinez-Salvador, A., Meana, A., Mayack, C., Higes, M., 2011. Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitology Research. 109, 605–612.
  • Matsumoto, K., Orikasa, Y., Ichinohe, K., Hashimoto, S., Ooi, T., Taguchi, S., 2010. Flow cytometric analysis of the contributing factors for antimicrobial activity enhancement of cell-penetrating type peptides: case study on engineered apidaecins. Biochemical and Biophysical Research Communications. 395, 7-10.
  • Mayack, C., Naug, D., 2009. Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertabrate Pathology. 100 (3), 185–88.
  • Mayack, C., Naug, D., 2010. Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. Journal of Insect Physiology. 56, 1572-1575.
  • Murphy, K., Travers, P, Walport, M., 2017. Janeway`s Inmunobiology. 9na ed. London and New York.
  • Müller, M., Biganski, S., Moritz, R. F. A., 2015. Plasticity of behavioural modulation in honey bee workers (Apis mellifera) infected with Nosema ceranae (Microsporida). Jahrestagung der Arbeitsgemeinschaft der Institute für Bienenforschung e.V., Münster, pp. 40–41.
  • Naug, D., Gibbs, A., 2009. Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie. 40, 595-599.
  • Nazzi, F., Brown, S. P., Annoscia, D., Del Piccolo, F., Di Prisco, G., Varricchio, P., Della Vedova, G., Cattonaro, F., Caprio, E., Pennacchio, F., 2012. Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies. PLoS Pathology. 8, e1002735.
  • Olszewski, K., 2009. Assessment of production traits in the Buckfast bee. Journal of Apicultural Science. 2, 79-90.
  • Paxton, R. J., Klee, J., Korpela, S., Fries, I., 2007. Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie. 38, 558–565.
  • Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E., 2010. Global Pollinator Declines: Trends, Impacts and Drivers. Trends In Ecology Evolution. 25, 345–353.
  • Rahnamaeian, M., Cytryníska, M., Zdybicka-Barabas, A., Dobslaff, K., Wiesner, J., Twyman, R.M, Zuchner, T., Sadd, B. M., Regoes, R.R., Schmid-Hempel, P., Vilcinskas, A., 2015. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proceedings of The Royal Society. 282, 20150293.
  • Schwarz, R. S., Evans, J. D., 2013. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Developmental and Comperative Immunology. 40, 300-310.
  • Schlüns, H., Crozier R. H., 2007. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Molecular Biology. 16(6), 753-9.
  • Sinpoo, C., Paxton, R.J., Disayathanoowat, T., Krongdang, S., Chantawannakul, P., 2018. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response. Journal of Insect Physiology. 105, 1-8.
  • Teixeira, E´. W, Guimarães-Cestaro L., Alves, L. T. M. F, Message, D., Martins, M. F., Luz, C.F.P da, Serrão J. E., 2018. Spores of Paenibacillus larvae, Ascosphaera apis, Nosema ceranae and Nosema apis in bee products supervised by the Brazilian Federal Inspection Service. Revista Brasileira De Entemologia. 62, 188–194.
  • Tozkar, C. Ö., 2015. Türkiye’deki arı ırklarında patojen ve ilgili mikroorganizmaların yaygınlığı ve Nosema ceranae enfeksiyonuna karşı gösterdikleri farklı tepkiler. Doktora Tezi. Orta Doğu Teknik Üniversitesi, Fen Bilimleri Ensitütüsü, 165 s.
  • Traver, B. E., Williams, M. R., Fell, R. D., 2012. Comparison of within Hive Sampling and Seasonal Activity of Nosema ceranae in Honey Bee Colonies. Journal Of Invertebrate Pathology.109, 187–193.
  • Vidau, C., Panek, J., Texier, C., Biron, D. G., Belzunces, L. P., Le Gall, M., Broussard, C.,Delbac, F., El Alaoui, H., 2014. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. Journal Of Invertebrate Pathology. 121, 89–96.
  • Wagner, D. L., 2020. Insect Declines in the Anthropocene. Annual Review of Entomology. 65, 457–480.
  • Whitaker, J., Szalanski, A.L. Kence, M., 2011. Molecular detection of Nosema ceranae and N. apis from Turkish honey bees. Apidologie. 42, 174–180
  • Wilson-Rich, N., Spivak, M., Fefferman, N. H., Starks, P. T., 2009. Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Review of Entomology. 54, 405-423.
  • Williams, G. R., Shafer, A. B. A., Rogers, R. E. L, Shutler, D., Stewart, D. T., 2008. First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA. Journal of Invertebrate Pathology. 97, 189–192.
  • Xu, P., Shi, M., Chen, X. X., 2009. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana. PloS One. 4(1), e4239.