SHOCK WAVE CAPTURING WITH MULTI-GRID ACCELERATED, SOLUTION ADAPTIVE, CARTESIAN GRID BASED NAVIER STOKES SOLVER

Kartezyen ağlar, karmaşık geometriler için otomatik ağ oluşturma ve bu gibi geometriler etrafında akışın gövde şeklinden ve sayısından bağımsız şekilde benzetim kurmak için özellikle tasarlanmış algoritmalar kullanırlar. Geleneksel gövde-uyumlu yaklaşıma göre Kartezyen yöntemlerinin belirgin üstünlüğü gömülü sınırların geometrik karmaşıklığından bağımsız olarak hesaplama ağının, kesik-hücrenin kullanıldığı sınırlar dışında, değişmemesidir. Bu çalışmada, geliştirilen sıkıştırılabilir akış çözücüsüne, kapalı yüzeyler çevresinde Kartezyen temelli algoritmalar kullanılarak iki-boyutlu uyarlanabilir geliştirme/genişleme şema kodları ilave edilmiştir.Kartezyen ağlar, Kartezyen hücrelerinin birbirlerine bağlanmalarını sağlamak için oluşturulan, iki-boyutlu akışlarda dörtlü ağaç temelli veri yapısı kullanarak üretilmiştir. Çözüm uyarlaması marifetiyle şok dalgaları çevresinde daha ince ağ örgüsü elde edilmiştir. Yakınsama oranı çok katmanlı ağ yöntemi ile arttırılmıştır. Sonuçta, kullanıcı müdahalesine gerek olmayan, nesne tabanlı FORTRAN programlama dilinde Kartezyen ağ üreticisi temelli akış çözücüsü uygulanmıştır. Literatürde mevcut olan NACA 0012 kanadı çevresindeki sesüstü akışlar için deneysel ve nümerik verilerle çözümler karşılaştırılarak doğrulanmıştır. Çözüm uyarlama yöntemlerini kullanarak, geliştirilen GeULER-NS kodu tarafından kanat çevresindeki Mach kontürleri şok dalgasını doğrulamış ve yakalamıştır.

ÇOK KATMANLI AĞLA HIZLANDIRILMIŞ, ÇÖZÜM UYARLAMALI, KARTEZYEN AĞ TEMELLİ NAVIER-STOKES ÇÖZÜCÜSÜ İLE ŞOK DALGASI YAKALANMASI

Cartesian grids employ specially designed algorithms to generate automatic grids for complex geometries and to simulate flows around such geometries regardless of the body shape and number of bodies. The main advantage of Cartesian methods over the body-conformal approach is that without regard to drawbacks of the geometric complexity of the embedded boundaries, the computational grid does not alter except close to all boundaries where cutcells are employed. In this study, implementation of generated two-dimensional adaptive refinement/coarsening scheme codes is appended to the developed compressible flow solver by using special Cartesian-based algorithms. Cartesian grids are generated by constructing a quadtree based data structure in two-dimensional flows. By means of solution adaptation, a finer grid is obtained around a shock wave. Convergence rate is increased with multi-grid method. Thus, a "hands-off", Cartesian grid generator based flow solver is implemented in object-oriented FORTRAN programming language. The solutions are validated by comparing the results with experimental and numerical data available in literature for the supersonic flow around NACA 0012 airfoil. Employing the solution adaptation techniques, Mach contours of the flow around the wing have verified and captured the shock wave by the developed GeULER-NS (cartesian-Grid-generator-with-eULER-and-Navier-Stokes-flow-solver) code.

___

  • Ye, T., Mittal, R., Udaykumar, H. S., & Shyy, W. "An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries", Journal of Computational Physics, No: 156(2),DOI:10.1006/jcph.1999.6356]
  • Kara, E., Kutlar, A.I., Aksel M.H., "Quad-Tree Based Generation", 8th International Conference on Continuum Mechanics (CM '13), 16-19 July, Series No. http://www.wseas.us/e library/conferences/2013/Rhodes/HYDRECO/HYDR ECO-01.pdf]
  • Kara, E., Kutlar, A.I., Aksel M.H., "A Quad- Tree Based Automatic Adaptive Cartesian Grid Generator with Applications on Multi-Element Airfoils", 7th Ankara International Aerospace Conference Ankara/Turkey, http://aiac.ae.metu.edu.tr/db/serv.php?Paper=AIAC- 2013-027]
  • Kara, E., Kutlar, A.I., Aksel M.H., "A solution adaptive multi-grid Euler solver on two-dimensional Cartesian grids", 8th Ankara International Aerospace Conference Ankara/Turkey, http://aiac.ae.metu.edu.tr/db/serv.php?Paper=AIAC- 2015-133]
  • Kara, E., Kutlar, A.I., Aksel M.H., "A Solution Adaptive Cartesian Grid Based Euler Solution for Compressible Flow around BOEING TR-1322 Multi- element Airfoil", Nevsehir Science and Technology Journal, Vol.4, No:1, 69-80, 2015. [DOI: 10.17100/nevbiltek.66399]
  • Kara, E., Kutlar, A.I., Aksel, M.H., "An octree- based solution-adaptive Cartesian grid generator and Euler solver for the simulation of three-dimensional inviscid compressible flows", Progress in Computational Fluid Dynamics, Vol.16, No: 3, pp.131-145, 1504/PCFD.2016.076247]
  • Marshall, D. "Fully automated Cartesian grid CFD application for MDO in high speed flows", NASA Technical Report, pp 1-254, 2003.
  • E.F. Toro, "Riemann Solvers and Numerical Methods for Fluid Dynamics", 3rd Edition, Springer- Verlag Publishing, Berlin, 2009.
  • Liou, M.S., Steffen, C.J., "A New Flux Splitting Scheme", Journal of Computational Physics, Vol.107, DOI:10.1006/jcph.1993.1122]
  • E. Kara, "Development of a Navier Stokes Solver for Compressible Flows on Cartesian Grids with dissertation, University of Gaziantep, Gaziantep, Turkey, 2015.
  • Arminjon, P., Madrane, A., "A Staggered Lax- Friedrichs Type Mixed Finite Volume/Finite Element Method for the Simulation of Viscous Compressible Flows on Unstructured Triangular Grids", AIAA Journal, http://www.crm.umontreal.ca/pub/Rapports/2500- 2599/2575.pdf]
  • De Palma, P., De Tullio, M.D., Pascazio, G., Napolitano, M., "An Immersed-Boundary Method for Compressible Viscous Flows", Computers & Fluids, Vol: 35, No: 7, pp. 693-702, 2006. [DOI: 10.1016/j.compfluid.2006.01.004]
  • Liu, J., Zhao, N., Hu, O., Goman, M., Li, X. K., "A New Immersed Boundary Method for Compressible International Journal of Computational Fluid Dynamics, Vol: 27, No: 3, pp. 151-163, 2013. [DOI: 10.1080/10618562.2013.791391]
  • L. Cambier, "Computation of Viscous Transonic Flows Using an Unsteady Type Method and a Zonal Grid Refinement Technique", Numerical Simulation of Compressible Navier-Stokes Flows, pp. 105-122, Vieweg Teubner Verlag Publishing, Germany, 1987. [DOI: 10.1007/978-3-322-87873- 1_6]
  • B. Müller, T. Berglind, A. Rizzi, "Implicit Central Difference Simulation of Compressible Navier-Stokes Flow Over a NACA0012 Airfoil", Numerical Simulation of Compressible Navier-Stokes Flows, pp. 183-200, Vieweg Teubner Verlag Publishing, Germany, 1987. [DOI: 10.1007/978-3- 322-87873-1_11]