A NUMERICAL AND EXPERIMENTAL STUDY FOR AERODYNAMIC THRUST OPTIMIZATION

Çırpan kanatlar, düşük Reynold sayılarındaki uçuşlarda dahi taşıma ve itki kuvvetlerinde sağladıkları hatrı sayılır kazanımlardan ötürü büyük ölçüde dikkati üzerlerinde toplayarak geleneksel mikro hava aracı (MHA) tasarımlarına bir alternatif oluşturmuşlardır. MHA'ların boyutlarının, sessiz çalışmalarının ve hafifliklerinin yanı sıra, gelişen teknolojilerle de sağdıkları yararların artışı uygulama alanlarında genişlemeyi de beraberinde getirmiştir. MHA'ların en önemli faydaları hafifliklerinden kaynaklanan kazanımlar olmuştur; ancak itki sağlayan sistemlerinin eklenmesiyle ağırlığın önemli ölçülerde artması avantajlarının dezavantaja dönüşümüne sebep olmaktadır. Bu noktada, çırpan kanatlar MHA'lar için itki sağlama konusunda elzem bir rol kazanmışlardır. Bu kanat çırpma hareketi ilhamını kuş ve böceklerin doğadaki uçuş örneklerinden almıştır. Bu çalışmada, eşzamanlı yunuslama ve akıma dik yönde ötelenme hareketleri yapan düz bir levha için önce optimum itki veren hareket tarzı sayısal olarak saptanmış, ardından da su kanalında sıfır akım hızında ve sonlu bir akış hızında 12 farklı durumda, optimum dahil, salınımlı bir levha için kuvvet ölçümü ile karşılaştırmalar yapılmıştır. Deneysel ve sayısal sonuçlar düşük hareket frekanslarında daha uyumlu sonuç göstermiştir. Deneysel ve sayısal sonuçların her ikisi de frekans ve genlik artışıyla üretilen itki kuvvetinin doğru orantılı olarak arttığını göstermiştir.

AERODİNAMİK İTKİ OPTİMİZASYONU İÇİN SAYISAL VE DENEYSEL BİR ÇALIŞMA

Flapping wings draw considerable attention due to their advantages in lift and thrust recovery in low Reynolds number fight, where they can be used as an alternative to conventional micro air vehicle (MAV) designs. The application areas of MAVs has widened with the development of new flight techniques of MAVs besides their advantages that they already have such as lightness, being small in size and quietness. Their lightweight is one of their primary advantages; however the thrust provider systems result in MAVs to get heavier. At this point, flapping wings might have a crucial role in generation of thrust for MAV flight. Thrust generation from flapping wings is inspired from powered flight in nature. In this study, the behavior of a flat plate performing simultaneous pitching and plunging motions is numerically determined for optimum thrust. Then, for 12 different test cases, experimental force measurements are made using an oscillating flat plate with various frequencies and amplitudes, including the optimum, in both zero freestream velocity and with a finite freestream velocity to compare the results. The experimental and numerical results have better agreement at lower frequencies of the airfoil motion. Both the experimental and numerical results show that with increasing motion frequency and amplitude the generated thrust also increases proportionally.

___

  • Dickinson, M.H., Lehmann, F.O. and Sane, S.P., Wing rotation and the aerodynamic basis of insect flight. Science, 284 (5422), pp.1954-1960.,
  • Shyy, W., Lian, Y., Tang, J., Viieru, D. and Liu, H., Aerodynamics of low Reynolds number flyers. Vol.22. Cambridge University Press, 2007.
  • DeLaurier, J.D. and Harris, J.M., A study of mechanical flapping wing flight. Aeronautical Journal, Vol.97, pp.277-286, 1993.
  • Mueller, T.J. and DeLaurier, J.D., Aerodynamics of small vehicles. Annual Review of Fluid Mechanics, 35(1), pp.89-111, 2003.
  • Pesavento, U. and Wang, Z.J., Flapping wing flight can save aerodynamic power compared to steady flight. Physical review letters, Vol. 103(11), p.118102, 2009.
  • Knoller, R., Die gesetze des luftwiderstandes. Flug-und Motortechnik (Wien), Vol.3, No.21, pp.1-7, 1909.
  • Betz, A., Ein Beitrag zur Erklarung des Segelfluges. Zeitschrift fur Flugtechnik und Motorluftschiffahrt, Vol.3, pp.269-272, 1912.
  • Katzmayr, R., Effect of periodic changes of angle of attack on behavior of airfoils. NACA Report No. 147, 1922.
  • Jones, K.D., Dohring, C.M. and Platzer, M.F., Experimental and computational investigation of the Knoller-Betz effect. AIAA journal, 36(7), pp.1240- 1246., 1998.
  • Wang, J.Z., Vortex Shedding and Frequency Selection in Flapping Flight. Journal of Fluid Mechanics, Vol. 410, pp.323-341, 2000.
  • Garrick, I.E., 'Propulsion of a Flapping and Oscillating Airfoil, NACA R-567, 1936.
  • Bisplinghoff, R.L., Ashley, H., Halfman, R.L., 1996, Aeroelasticity, Dover Publications Inc., New York, 1996.
  • Walker, W.F. and Paul, M.J., Unsteady Aerodynamics of Deformable Thin Airfoils, Journal of Aircraft, Vol. 51, No. 6, pp.1673-1680, NovemberDecember, 2014.
  • Karakaş, F., Paça, O., Köse, C., Son, O., Zaloğlu, B., Fenercioğlu, İ., Çetiner, O., Çırpan kanatta kanat profilinin etkisi, Havacılık ve Uzay Teknolojileri Dergisi (HUTEN), Vol. 7, No. 2, pp. 55- 70, 2014
  • Gulcat U. Fundamentals of modern unsteady aerodynamics. Springer; 2016 Feb 22.