Piezoelektrik Malzemeler Kullanilarak Çeşitli Yükler Altinda DüzPlakalarin Titreşim Kontrolü Üzerine Sayısal Çalışma

Bu çalışmada piezoelektrik yapılarla plakaların titreşim kontrolü amaçlanmıştır. Ek olarak, plakada farklı malzemeler kullanılarak malzeme özelliklerinin değişiminin titreşim kontrolündeki etkisini ve piezoelektrik yapılarla olan bağlantısı incelenmiştir. Kullanılan PZT yamaların konumları için plakanın titreşim mod şekilleri ve doğal frekansları temel alınarak yüksek gerinim görülen yerler seçilmiştir. Bu yamaların optimum kalınlığı plakanın malzeme ve geometrik özelliklerine ve piezoelektrik yamaların malzeme özelliklerine bağlı olarak hesaplanmıştır. Ayrıca, plakanın yamaların bulunduğu yüzeylerdeki hız değerleri alınarak piezoelektrik yapıların voltaj değerleri elde edilmişitir. Bu çalışmada, titreşim kontrolünü sağlamak adına piezoelektrik yamalar kullanılmıştır ve plakanın yer değiştirmesindeki azalma incelenmiştir. Plakanın malzemesi değiştikçe kullanılması gereken piezoelektrik yamalarının kalınlıklarının değişmesi gerektiği görülmüştür. Ayrıca uygulanması gereken voltaj değerlerinin yamaların bulunduğu konuma göre değiştiği incelenmiştir. Ek olarak, sönümleme parametresinin farklı yüklemler altında sistemin cevabına farklı etkileri olduğu görülmüştür.

A Numerical Study on Vibration Control of Flat Plates Under Various Loads Using Piezoelectric Materials

In this study, vibration control of rectangular plates with piezoelectric (PZT) structures under different loading conditions is considered. By using different materials on the plate, the effect of material properties on vibration control and its connection with piezoelectric structures are investigated. The PZT patches are placed in the certain areas of the plate. The strains are greatest in these regions, and these strains are derived from the modes and natural frequencies of the plate. The optimum thicknesses of these patches are determined from the material and geometric properties of the plate and the material properties of the piezoelectric patches. It is found that the thickness of the piezoelectric patches must change as the material of the plate changes. It is observed that the applied voltage values vary according to the location of the patches. In addition, it has been seen that the damping parameter has different effects on the response of the system under different loads.

___

  • [1] C. W. De Silva, Ed., Vibration Damping, Control, and Design. CRC Press, 2007.
  • [2] C. M. A. Vasques and J. Dias Rodrigues, “Active Vibration Control of Smart Piezoelectric Beams: Comparison of Classical and Optimal Feedback Control Strategies,” Computers & Structures, vol. 84, no. 22-23, pp. 1402–1414, September 2006.
  • [3] A. Luemchamloey and S. Kuntanapreeda, “Active Vibration Control of Flexible Beams Based on InfiniteDimensional Lyapunov Stability Theory: An Experimental Study,” Journal of Control, Automation and Electrical Systems, vol. 25, no. 6, pp. 649-656, July 2014.
  • [4] S. S. Heganna and J. J. Joglekar, “Active Vibration Control of Smart Structure Using PZT Patches,” Procedia Computer Science, vol. 89, pp. 710-715, December 2016.
  • [5] L. Gao, Q. Lu, F. Fei, L. Liu, Y. Liu, and J. Leng, “Active Vibration Control Based on Piezoelectric Smart Composite,” Smart Materials and Structures, vol. 22, no. 12, pp. 125032, November 2013.
  • [6] A. R. Gomaa and H. Hai, “Analysis of Piezoelectric Actuator for Vibration Control of Composite Plate,” in IOP Conference Series: Material Science and Engineering, 2017.
  • [7] A. E. Guennam, and B. M. Luccioni, “FE Modeling of a Closed Box Beam with Piezoelectric Composite Patches,” Smart Materials and Structures, vol. 15, no. 6, pp. 1605, October 2006.
  • [8] R. Rimašauskienė, V. Jūrėnas, M. Radzienski, M. Rimašauskas, and W. Ostachowicz, “Experimental Analysis of Active–Passive Vibration Control on ThinWalled Composite Beam,” Composite Structures, vol. 223, pp. 110975, September 2019.
  • [9] T. Bailey and J. E. Hubbard, “Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam,” Journal of Guidance, Control, and Dynamics, vol. 8, no. 5, pp. 605–611, September 1985.
  • [10] M. Indri and A. Tornambè, “Control of a Piezoelectric Flexible Structure Striking a Quasi-Rigid Body,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 31-36, 1996.
  • [11] B.N. Agrawal, M.A. Elshafei and G. Song, “Adaptive Antenna Shape Control Using Piezoelectric Actuators,” Acta Astronautica, vol. 40, no. 11, pp. 821- 826, June 1997.
  • [12] M. Arafa and A. Baz, “Dynamics of Active Piezoelectric Damping Composites,” Composites Part B: Engineering, vol. 31, no. 4, pp. 255-264, June 2000.
  • [13] C. Yong, D. G. Zimcik, V. K. Wickramasinghe and F. Nitzsche, “Research of an Active Tunable Vibration Absorber for Helicopter Vibration Control,” Chinese Journal of Aeronautics, vol. 16, no. 4, pp. 203- 211, November 2003.
  • [14] B. P. Baillargeon, S. S. Vel and J. S. Koplik, “Utilizing ABAQUS to analyze the active vibration suppression of structural systems,” in ABAQUS Users’ Conference, 2004, pp. 25-27.
  • [15] S. Raja, A. A. Pashilkar, R. Sreedeep and J. V. Kamesh, “Flutter Control of a Composite Plate with Piezoelectric Multilayered Actuators,” Aerospace Science and Technology, vol. 10, no. 5, pp. 435-441, July 2006.
  • [16] C. W. To and T. Chen, “Optimal Control of Random Vibration in Plate and Shell Structures with Distributed Piezoelectric Components,” International Journal of Mechanical Sciences, vol. 49, no. 12, pp. 1389-1398, December 2007.
  • [17] S. H. Hashemi, H. Kalbasi, and H. R. D. Taher, “Free Vibration Analysis of Piezoelectric Coupled Annular Plates with Variable Thickness,” Applied mathematical modelling, vol. 35, no. 7, pp. 3527-3540, July 2011.
  • [18] S. Gohari, S. Sharifi, R. Abadi, M. Izadifar, C. Burvill and Z. Vrcelj, “A Quadratic Piezoelectric Multi-Layer Shell Element for FE Analysis of Smart Laminated Composite Plates Induced by MFC Actuators,” Smart Materials and Structures, vol. 27, no. 9, pp. 095004 2018.
  • [19] M.A. Foda, A.A. Almajed and M.M. ElMadany, “Vibration Suppression of Composite Laminated Beams Using Distributed Piezoelectric Patches,” Smart Materials and Structures, vol. 19, no. 11, pp. 115018, November 2010.
  • [20] R. Kandasamy and S. Dominique, “Finite element based active vibration control of hierarchical honeycomb plates integrated with piezoelectric actuator,” SAE Technical Paper 2018-01-1558, June 2018.
  • [21] S. C. Her and H. Y. Chen, “Stress analysis of sandwich composite beam induced by piezoelectric layer,” Journal of applied biomaterials & functional materials, vol. 16, no. (1_suppl), pp. 132-139, January 2018.
  • [22] Esen, İ, “A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory,” Latin American Journal of Solids and Structures, vol. 12, no.4, pp. 808, August 2015.
  • [23] Metallic Materials Properties Development and Standardization (MMPDS-10), Battelle Memorial Institute, 2015.
  • [24] S. Gohari, S. Sharifi, R. Abadi, M. Izadifar, C. Burvill and Z. Vrcelj, “A Quadratic Piezoelectric Multi-Layer Shell Element for FE Analysis of Smart Laminated Composite Plates Induced by MFC Actuators,” Smart Materials and Structures, vol. 27, no. 9, pp. 095004, 2018.
  • [25] Y. Yu, X. N. Zhang and S. L. Xie, “Optimal Shape Control of a Beam Using Piezoelectric Actuators with Low Control Voltage,” Smart materials and structures, vol. 18, no. 9, pp. 095006, 2009.
  • [26] Dassault Systèmes. Abaqus 6.10 Example Problems Manual Vollume II: Other Applications and Analyses, 2010.
  • [27] A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting. John Wiley & Sons, April 2011.
  • [28] Dassault Systèmes. 6.14 Analysis User’s Manual, 2014.
  • [29] E. Bianchini, “Active vibration control of automotive steering wheels,” SAE Technical Paper 2005-01-2546, May 2005.
  • [30] E. Bianchini, “Active vibration control of automotive like panels,” SAE Technical Paper 2008- 36-0576, 2008.
  • [31] E. F. Crawley and J. De Luis, “Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA journal, vol. 25, no. 10, pp. 1373-1385, 1987
  • [32] J. Sirohi and I. Chopra, “Fundamental behavior of piezoceramic sheet actuators,” Journal of Intelligent Material Systems and Structures, vol. 11, no. 1, pp. 47- 61, January 2000.
  • [33] V. Dogan and R. Vaicaitis, “Active control of nonlinear cylindrical shell vibrations under random excitation,” Journal of Intelligent Material Systems and Structures, vol. 10, no. 5, pp. 422-429, May 1999.