Gelişmiş Helikopter Rotor Palaları İçin Çok Disiplinli Kavramsal TasarımMetodu ve Tasarım Aracı

Bu çalışmada, helikopter kavramsal tasarım, boyutlandırma ve değerlendirme aşamalarında kullanıma uygun, çok disiplinli rotor palası tasarım yaklaşımı anlatılmıştır. Pala boyunca lineer ve non-lineer dağılım fonksiyonları olarak tarif edilmiş veter, kalınlık oranı, kamburluk oranı, ve burulma parametreleri ile pala dış yüzeyi ve yapısal geometri temsil edilmektedir. Kaplama ve spar için katman sayılarının dağılımı da çalışmada izah edilen modelde gösterilmiştir. Düşük seviyede fakat yeter çözünürlükte analiz methodları seçilerek toplam çözüm süresi azaltılmıştır. ROTAP adlı, BEMT metdou ile çalışan ve yazar tarafınfa geliştirilmiş helikopter boyutlandırma kodu, performans analizleri ve boyutlandırmada kullanılmıştır. Airfoillerin aerodinamik karakteristikleri ise, literatürde iyi bilinen bir panel kodu olan Xfoil yardımıyla hesaplanmıştır. Yapısal analizlerde bir boyutlu sonlu elemanlar yaklaşımı kullanılmışıtır. Kiriş kesit özellikleri VABS, yükler altında ki deplasmanlar ise GEBT yardımı ile hesaplanmıştır. Tüm bu yazılımlar modifiye edilerek geliştirilen algoritma içerisine gömülerek kullanıcı dostu bir arayüzü olan tek bir kod altında birleştirilmiştir. Geliştirilen algoritma ve tasarım aracı, rotor tasarımı kavramsal tasarım aşamasında palanın performans ve yapısal dayanım analizlerinde kullanılabilir.

Multidisciplinary Conceptual Design Methodology and Design Tool for Rotor Blades of Advanced Helicopters

A multidisciplinary rotor blade design approach, which is suitable for conceptual design, sizing and evaluation of helicopters is presented. Blade outer surface and structural geometry is represented by a geometrical model in which chord, thickness ratio, camber ratio and twist distributions along the blade radial stations can be defined as linear or nonlinear functions. Distribution of the number of laminas for both skin and spar were also defined in the presented model parametrically. Low level fidelity analysis methods were chosen to reduce the computing time. Performance analysis and sizing of the vehicle are performed by an in-house developed code named as ROTAP based on BEMT. Airfoil aerodynamic characteristics are calculated by Xfoil, a well-known panel method software. Structural analyses are performed by 1D finite element method approach. Cross-sectional properties of the composite beam are calculated by VABS software and displacements under the loads are calculated by the GEBT. All these programs are modified and embedded into the developed code and a single program with user friendly interface emerged. Developed algorithm and tool can be used for performance and structural strength calculations during the rotor design optimization studies at the conceptual design stage.

___

  • [1] J. L. Walsh, G. J. Bingham and M. F. Riley, "Optimization Methods Applied to The Aerodynamic Design of Helicopter Rotor Blades," Journal of American Helicopter Society, vol. 32, no. 4, pp. 39-44, October 1987.
  • [2] C. W. Acree Jr, P. B. Martin and E. A. Romander, "Impact of Airfoils on Aerodynamic Optimization of Heavy Lift Rotorcraft," in AHS Vertical Lift Aircraft Design Conference, San Francisco, California, January 18-20, 2006.
  • [3] M. A. Elfarra, "Optimization of Helicopter Rotor Blade Performance by Spline-Based Taper Distribution Using Neural Networks Based on CFD Solutions," Engıneerıng Applıcatıons Of Computatıonal Fluıd Mechanıcs, vol. 13, no. 1, pp. 833-848, August 2019.
  • [4] N. A. Vu, J. W. Lee and J. I. Shu, "Aerodynamic Design Optimization of Helicopter Rotor Blades Including Airfoil Shape for Hover Performance," Chinese Journal of Aeronautics, vol. 26, no. 1, pp. 1-8, January 2013.
  • [5] A. L. Pape and P. Beaumier, "Numerical Optimization of Helicopter Rotor Aerodynamic Performance in Hover," Aerospace Science and Technology, vol. 9, pp. 191-200, March 2005.
  • [6] G. Guglieri, "Using of Particle Swarm for Performance Optimization of Helicopter Rotor Blades," Applied Mathematics, vol. 3, pp. 1403-1408, October 2012.
  • [7] B. Glaz, Active/Passive Optimization of Helicopter Rotor Blades for Improved Vibration, Noise, and Performance Characteristics. PhD [Dissertation]. Michigan: The University of Michigan Thesis, 2008.
  • [8] S. B. Visweswaraiah, H. Ghiasi, D. Pasini and L. Lessard, "Multi-Objective Optimization of a Composite Rotor Blade Cross-Section," Composite Structures, vol. 96, pp. 75-81, October 2012.
  • [9] S. Murugan, R. Ganguli and D. Harursampath, "Robust Aeroelastic Optimization of Composite Helicopter Rotor," in International Conference on Engineering Optimization, Rio de Janeiro, BRAZİL, June 01-05, 2008.
  • [10] N. A. Vu, J. W. Lee, T. P. Nam Le and S. T. T. Nguyen, "A fully automated framework for helicopter rotorblades design and analysis including aerodynamics,structure, and manufacturing," Chine Journal of Aeronautics, vol. 29, no. 6, pp. 1602-1617, December 2016.
  • [11] D. Leusink, D. Alfano, P. Cinnella and J. C. Robinet, "Aerodynamic rotor blade optimization at Eurocopter - a new way of industrial rotor blade design," in 51st AIAA Aerospace Sciences Meeting, Texas, USA, January 07-10, 2013.
  • [12] G. Wilke, "Variable Fidelity Optimization of Required Power of Rotor Blades: Investigation of Aerodynamic Models and their Application," in 38th European Rotorcraft Forum, Amsterdam, NETHERLAND, September 04-07, 2012.
  • [13] K. B. Collins, L. N. Sankar and . D. N. Mavris, "Application of Low- and High-Fidelity Simulation Tools to Helicopter Rotor Blade Optimization," Journal of the American Helicopter Society, vol. 58, no. 4, pp. 1-10, October 2013.
  • [14] J. Bailly and D. Bailly, "Multifidelity Aerodynamic Optimization of a Helicopter Rotor Blade," AIAA Journal, vol. 57, no. 8, pp. 3132-3144, April 2019.
  • [15] H. Yeo, W. G. Bousman and W. Johnson, "Performance Analysis of a Utility Helicopter with Standard and Advanced Rotors," in American Helicopter Society Aerodynamics, Acoustics and Test and Evaluation Technical Specialist Meeting, San Francisco, USA, January 23-25, 2002.
  • [16] A. Bagai, "Aerodynamic Design of the X2 Technology Demonstrator Main Rotor," in 64th Annual Forum of the American Helicopter Society, Montreal, USA, April 29, 2008, pp. 29-44
  • [17] W. Chen, . K. Chiu and M. D. Fuge, "Airfoil Design Parameterization and Optimization using Bézier Generative Adversarial Networks," AIAA Journal , vol. 58, no. 11, pp. 4723-4735, November 2020.
  • [18] R. Mukesh, K. Lingadurai and U. Selvakumar, "Airfoil shape optimization using non-traditional optimization technique and its validation," Journal of King Saud University – Engineering Sciences, vol. 26, no. 2, pp. 191-197, July 2014.
  • [19] L. U. Dadone, "Advanced airfoils for helicopter rotor application". US Patent US4314795A, 9 Feb 1982.
  • [20] I. H. Abbott and A. E. V. Doenhoff, Theory of Wing Sections Including a Summary of Airfoil Data, Newyork: Dover Publications, 1959.
  • [21] E. N. Jacobs, K. E. Ward and R. M. Pinkerton, "The Characteristics of 78 Related Airfoil Sections From Test in the Variable Density Wind Tunnel," National Advisory Commitie for Aeronautics, Washington D.C., USA, Tech. Rep. 460, 1935.
  • [22] H. Ibacoglu, Helicopter Preliminary Design Automation, PhD [Dissertation]. Istanbul: İstanbul Technical University Thesis, 2007.
  • [23] J. G. Leishman, Principles of Helicopter Aerodynamics 2nd Edition, Newyork: CambridgeUniversity Press, 2006.
  • [24] M. Drela, "XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils," in Lecture Notes in Engineering, Vol 54., Springer, Berlin, Heidelberg., GERMANY, 1989.
  • [25] W. Y. Abbott, J. O. Benson, R. G. Oliver and R. A. Williams, "Validation Flight Test of UH-60A for Rotorcraft Systems Integration Simulator (RIRS)," US Army Aviation Engineering Flight Activity Edwards Air Force Base, CA, USA, Tech. Rep. USAAEFA-79- 24, 1982.
  • [26] P. M. Shinoda, "Full Scale S-76 Rotor Performance and Loads at Low Speeds in hte NASA AMES 80 by 120-Foot Wind Tunnel Volume 1," NASA, CA, USA, Tech. Rep. 96-A-004, 1996.
  • [27] H. Ibacoglu, K. Anbarci and A. R. Aslan, "Unmanned Rotorcraft Preliminary Design Optimization by Response Surface Methodology," in Asia-Pacific International Symposium on Aerospace Technology, Jeju, Korea, 2012.
  • [28] A. J. Ruddell, "Advancing Blade Concept (ABC) Technology Demonstrator," Sikorsky Aircraft Division, Stratford, USA, Tech. Rep. SER-69065, 1981.
  • [29] B. Glaz, P. F. Friedmann and L. Liu, "Efficient Global Optimization of Helicopter Rotor Blades for Vibration Reduction in Forward Flight," in 11th AIAA/ISSMO Multi Disciplinary Analysis and Optimization Conference, Virginia, USA, September 06-08, 2006.
  • [30] S. Murugan, R. Chrowdhury, S. Adhikari and M. Friswell, "Helicopter Aeroelastic Analysis with Spatially Uncertain Rotor Blade Properties," Aerospace Science and Technology, vol. 16, pp. 29-39, February 2011.
  • [31] C. E. Cesnic and D. H. Hodges, "VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling," in American Helicopter Society 51st Annual Forum, Fort Worth,TX, 1995.
  • [32] W. Yu and D. H. Hodges, "VABS: Going Beyond Linear Elastic Cross Sectional Analysis," energy.sandia.gov [Online]. Available: https://energy.sandia.gov/wpcontent/gallery/uploads/2B-D-2-Yu.pdf. [Accessed 07 July 2021].
  • [33] L. Wang, X. Liu, L. Guo, N. Renevier and M. Stables, "A Mathematical Model for CalculatingCrossSectional Properties of Modern Wind Turbine Composite Blades," Renewable Energy, vol. 64, pp. 52- 60, April 2014.
  • [34] R. Chandra and I. Chopra, "Structural behavior of two-cell composite rotor blades with elastic couplings," AIAA Journal, vol. 30, no. 12, pp. 2914-2921, December 1992.
  • [35] W. Yu, "Manuel of GEBT," analyswift.com 2011. [Online]. Available: http://analyswift.com/wpcontent/uploads/2012/11/GEBTManual.pdf. [Accessed 07 July 2021]