Parazitizm Safhası ile Değiştirilmiş Bozkurt Eniyileme Algoritması

Bozkurt Eniyileme Algoritması,vahşi doğadaki bir bozkurt sürüsünün avlanma sürecini taklit eden, doğadan esinlenmiş, sürü zekâsı tabanlı, popüler ve etkili bir metasezgisel eniyileme algoritmasıdır. Algoritma hem teorik hem de gerçek hayat problemlerini çözmek için geniş bir alanda kullanılmaktadır. Metasezgiseller eldeki problem için herhangi bir türev bilgisine ihtiyaç duyulmaması, basitlik ve esneklik gibi avantajları olmasına rağmen yerel en iyi çözümde takılıp kalma, erken yakınsama gibi istenilmeyen özelliklere de sahiptir. Metasezgiseller keşif ve yoğunlaşma özelliklerini dengeli bir şekilde kullanmalıdır. Bu çalışmada Bozkurt Eniyileme Algoritmasının keşif yeteneğini geliştirmek amacıyla "parazitizm" olarak adlandırılan basit bir operatörün eklenmesi önerilmiştir. Parazitizm Simbiyotik Organizmalar Araması algoritmasının bir safhasını teşkil eder. Değiştirilmiş algoritmanın iki varyantının performansı 13 test problemi kullanılarak orijinal Bozkurt Eniyileme Algoritması ile karşılaştırılmıştır. Elde edilen sonuçlara göre, orijinal sürüme parazitim safhasının eklenmesi algoritma parametrelerinde daha iyi sonuçların üretilmesini sağlamıştır.

Modified Grey Wolf Optimizer with Parasitism Phase

Grey Wolf Optimizer (GWO) is a popular and effective nature-inspired, swarm intelligence based metaheuristic optimization algorithm which imitates the hunting process of a wolf pack in the nature. It has been widely used to solve both theoretical and real life engineering optimization problems. Even though metaheuristics have many advantages such as requiring no derivative information of the problem at hand, simplicity, and flexibility, they also have some drawbacks like trapping local optima, and premature convergence. They should have a proper balance between diversification (exploration) and intensification (exploitation). In this study, inclusion of a simple operator, namely "parasitism", is proposed to improve the performance of GWO by means of exploration. Parasitism is a phase within Symbiotic Organisms Search (SOS) algorithm. The performances of 2 modified versions are compared with the original GWO, using 13 test beds. Results indicate that inclusion of parasitism phase into the original version has produced better results on the parameters of the algorithm.

___

  • [1] F. Yan, X. Xu, J. Xu, “Grey wolf optimizer with a novel weighted distance for global optimization”, IEEE Access, vol.8, June 2020.
  • [2] L. K. Panwar, S. Reddy K, A. Verma, B. K. Panigrahi, R. Kumar, “Binary grey wolf optimizer for large scale unit commitment problem”, Swarm Evol. Comput., vol. 38, pp. 251–266, February, 2018.
  • [3] A.N.Ünal, G. Kayakutlu, “Multi-objective particle swarm optimization with random immigrants”, Complex Intell. Syst., vol. 6, pp. 635–650, June 2020.
  • [4] P.Niu, S.Niu, N.Liu, L. Chang, “The defect of the grey wolf optimization algorithm and its verification method”, Knowledge-Based Syst., vol. 171, pp. 37–43, May 2019.
  • [5] L. Rodríguez, O. Castillo, J. Soria, “Grey wolf optimizer with dynamic adaptation of parameters using fuzzy logic”, in 2016 IEEE Congress on Evolutionary Computation, CEC 2016, Vancouver, BC, Canada, July 24-29, 2016, pp. 3116–3123.
  • [6] S. Dhargupta, M. Ghosh, S. Mirjalili, R. Sarkar, “Selective Opposition based Grey Wolf Optimization”, Expert Syst. Appl., vol. 151, August. 2020.
  • [7] D. Jitkongchuen, P. Phaidang, P. Pongtawevirat, “Grey wolf optimization algorithm with invasion- based migration operation”, in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS 2016, Okayama, Japan, June 26-29, 2016.
  • [8] A. Saxena, R. Kumar, S. Das, “β-Chaotic map enabled grey wolf optimizer”, Appl. Soft Comput. J., vol. 75, pp. 84–105, February 2019.
  • [9]P. Gupta, K. P. S. Rana, V. Kumar, P. Mishra, J. Kumar, S. S. Nair, “Development of a grey wolf optimizer toolkit in LabVIEWTM”, in 2015 International Conference on Futuristic Trends on Computational Analysis and Knowledge Management ABLAZE 2015, Greater Noida, India, February 25-27, 2015, pp. 107–113.
  • [10] S. Kohli, M. Kaushik, K. Chugh, A. C. Pandey, “Levy inspired enhanced grey wolf optimizer”, in 2019 Fifth International Conference on Image Information Processing, ICIIP 2019, Shimla, Indiai November 15-17, 2019, pp. 338–342.
  • [11] F. B. Ozsoydan, “Effects of dominant wolves in grey wolf optimization algorithm”, Appl. Soft Comput. J., vol. 83, October 2019.
  • [12] İ. Gölcük, F. B. Ozsoydan, “Evolutionary and adaptive inheritance enhanced grey wolf optimization algorithm for binary domains”, Knowledge-Based Syst., vol. 194, April 2020.
  • [13] K. Luo, “Enhanced grey wolf optimizer with a model for dynamically estimating the location of the prey”, Appl. Soft Comput. J., vol. 77, pp. 225–235, April 2019.
  • [14] S. Mirjalili, S. M. Mirjalili, A. Lewis, “Grey Wolf Optimizer”, Adv. Eng. Softw., vol. 69, pp. 46–61, March 2014.
  • [15] P. Hu, J. S. Pan, S. C. Chu, “Improved binary grey wolf optimizer and its application for feature selection”, Knowledge-Based Syst., vol. 195, May 2020.
  • [16] W. Long, J. Jiao, X. Liang, M. Tang, “Inspired grey wolf optimizer for solving large-scale function optimization problems”, Appl. Math. Model., vol. 60, pp. 112–126, August 2018.
  • [17] C. Lu, L. Gao, J. Yi, “Grey wolf optimizer with cellular topological structure”, Expert Syst. Appl., vol. 107, pp. 89–114, October 2018.
  • [18] M. A. Al-Betar, M. A. Awadallah, H. Faris, I. Aljarah, A. I. Hammouri, “Natural selection methods for grey wolf optimizer”, Expert Syst. Appl., vol. 113, pp. 481–498, December 2018.
  • [19] K. Jaiswal, H. Mittal, S. Kukreja, “Randomized grey wolf optimizer (RGWO) with randomly weighted coefficients”, in 2017 Tenth International Conference on Contemporary Computing, IC3 2017, Noida, India, August 10-12, 2017, pp. 1–3.
  • [20] D. Jitkongchuen, W. Sukpongthai, A. Thammano, “Weighted distance grey wolf optimization with immigration operation for global optimization problems”, in 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2017, Kanazawa, Japan, June 26-28 2017, pp. 5–9.
  • [21]M. Kohli, S. Arora, “Chaotic grey wolf optimization algorithm for constrained optimization problems”, J. Comput. Des. Eng., vol. 5, pp. 458–472, October 2018.
  • [22] R. A. Khanum, M. A. Jan, A. Aldegheishem, A. Mehmood, N. Alrajeh, A. Khanan, “Two new ımproved variants of grey wolf optimizer for unconstrained optimization”, IEEE Access, vol. 8, pp. 30805–30825, December 2020.
  • [23] H. Faris, I. Aljarah, M. A. Al-Betar, S. Mirjalili, “Grey wolf optimizer: a review of recent variants and applications”, Neural Comput. Appl., vol. 30, pp. 413– 435, July 2018.
  • [24] P. Jangir, N. Jangir, “A new non-dominated sorting grey wolf optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power”, Eng. Appl. Artif. Intell., vol. 72, pp. 449–467, June 2018.
  • [25] W. Leong, G. G. Yen, S. Member, “PSO-Based multiobjective optimization adaptive local archives”, IEEE Trans. Evol. Comput., vol. 38, pp. 1270–1293, October 2008.
  • [26] S.Mirjalili, T.Rawlins, A. Lewis, J. Hettenhausen, “A comparison of multi-objective optimisation metaheuristics on the 2D airfoil design problem”, Anziam J., vol. 54, pp. 345–360, July 2013.
  • [27] H. Faris., I. Aljarah., S. Mirjalili., P. A. Castillo., J. J. M., “EvoloPy: An Open-source Nature-inspired Optimization Framework in Python”, in Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 3: ECTA, IJCCI 2016, Porto, Portugal, November 9-11, 2016, pp. 171– 177.
  • [28]S.Saremi, S.Z.Mirjalili, S.M.Mirjalili, “Evolutionary population dynamics and grey wolf optimizer”, Neural Comput. Appl., vol. 26, pp. 1257 1263, July 2015.
  • [29] B. Mahdad, K. Srairi, “Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms”, Energy Convers. Manag., vol. 98, pp. 411–429, July 2015.
  • [30] S. Zhang, Y. Zhou, “Grey wolf optimizer based on powell local optimization method for clustering analysis”, Discret. Dyn. Nat. Soc., vol. 2015, November 2015.
  • [31] J. Zhou, W. Zhu, Y. Zheng, C. Li, “Precise equivalent model of small hydro generator cluster and its parameter identification using improved grey wolf optimiser”, IET Gener. Transm. Distrib., vol. 10, pp. 2108–2117, June 2016.
  • [32] A. Kishor, P. K. Singh, “Empirical Study of Grey Wolf Optimizer”, in Proceedings of Fifth International Conference on Soft Computing for Problem Solving, 2016, pp. 1037–1049.
  • [33]L. Rodríguez vd., “A fuzzy hierarchical operator in the grey wolf optimizer algorithm”, Appl. Soft Comput. J., vol. 57, pp. 315–328, August. 2017.
  • [34]Z. Miao, X. Yuan, F. Zhou, X. Qiu, Y. Song, K. Chen, “Grey wolf optimizer with an enhanced hierarchy and its application to the wireless sensor network coverage optimization problem”, Appl. Soft Comput. J., vol. 96, November. 2020.
  • [35] M. H. Nadimi-Shahraki, S. Taghian, ve S. Mirjalili, “An improved grey wolf optimizer for solving engineering problems”, Expert Syst. Appl., vol. 166, March 2021.
  • [36] B. Martin, J. Marot, S. Bourennane, “Improved discrete grey wolf optimizer”, in 2018 26th European Signal Processing Conference, EUSIPCO 2018, Rome, Italy, September 3-7, 2018, pp. 494–498.
  • [37] M.-Y. Cheng, D. Prayogo, “Symbiotic Organisms Search: A new metaheuristic optimization algorithm”, Comput. Struct., vol. 139, pp. 98–112, July 2014.
  • [38] M. Mavrovouniotis, S. Yang, “Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors”, Appl. Soft Comput. J., vol. 13, pp. 4023– 4037, October 2013.
Havacılık ve Uzay Teknolojileri Dergisi-Cover
  • ISSN: 1304-0448
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2003
  • Yayıncı: Dr. Öğr. Üyesi Fatma Kutlu Gündoğdu