Bulanık Choquet Integral Yöntemini Kullanarak İnsansız Hava Aracı Seçimi

İnsansız hava aracı (İHA) seçimi birçok alternatif ve kriterin aynı anda değerlendirilmesi gerektiği için kolay bir karar değildir. Bu seçim kararı için yükleme kapasitesi, maksimum hız, dayanıklılık, yükseklik, aviyonik sistemler, fiyat, ekonomik süre ve maksimum mesafe kriterleri dikkate alınmalıdır. Bu çalışmanın temel amacı bu kriterler dikkate alınarak en uygun İHA'ya karar vermektir. Karar vericinin kriterleri dilsel ve aralıklı değerler olarak tanımlamasına izin veren bu yöntem için bulanık mantık tabanlı bulanık Choquet integral yöntemi kullanılmıştır. Önerilen yöntemin uygulanabilirliğini analiz etmek için sayısal bir örnek sunulmuştur. Önerilen yaklaşım, farklı İHA'ları karşılaştırarak başarılı bir uygulama ile sonuçlanmış ve son aşamada en uygun araç seçilmiştir.

Unmanned Aerial Vehicle Selection Using Fuzzy Choquet Integral

Unmanned aerial vehicle (UAV) selection is not an easy decision as many alternatives and criteria must be evaluated at the same time. This selection decision requires the consideration of many different criteria including payload capacity, maximum speed, endurance, altitude, avionics systems, price, economic life, and maximum range. The main aim of this study is to decide the most appropriate UAV by considering these criteria. The fuzzy logic-based fuzzy Choquet integral methodology is used to select this vehicle which allows decision-makers to define references as linguistic and in interval range. A numerical example is presented to analyze the applicability of the proposed approach. The proposed approach resulted in a successful application by comparing different UAVs and the most appropriate vehicle is selected at the final stage.

___

  • [1] S. Dozic, and M. Kalic, “Selection of aircraft type by using even swaps method”, in 17 Th ATRS World Conference, Bergamo, Italy, June 26–29, 2013.
  • [2] W. Harasani, “Evaluation and selection of a fleet of aircraft for a local airline”, J. King Abdulaziz Univ. Eng. Sci. vol.17, pp. 3–16, July 2006.
  • [3] L. F. Gomes, A. M. De Fernandes, and J.E. De Mello, “A fuzzy stochastic approach to the multicriteria selection of an aircraft for regional chartering,” J. Adv. Transport. vol. 48, pp. 223–237, March 2012.
  • [4] D. Slavica, and M. Kalic, “Comparison of two MCDM methodologies in aircraft type selection problem,” Transportation Research Procedia, vol.10, pp. 910–919, 2015.
  • [5] G. Bruno, E. Esposito, and A. Genovese, “A model for aircraft evaluation to support strategic decisions,” Expert Syst. Appl. vol.42, pp. 5580–5590 August 2015
  • [6] L.E. Teoh, and H. L. Khoo, “Airline strategic fleet planning framework,” Journal of the Eastern Asia Society for Transportation Studies, vol. 11, pp. 2258– 2276, 2015.
  • [7] D. Slavica, and M. Kalic, “An AHP approach to aircraft selection process. Transportation Research Procedia vol. 3, pp. 165–174, 2014.
  • [8] Y. Ozdemir, and H. Basligil, Aircraft selection using fuzzy ANP and the generalized choquet integral method: the Turkish airlines case. J. Intell. Fuzzy Syst. 31, pp. 589–600, June 2016.
  • [9] K.Kiracı, and M.Bakır,”Application of commercial aircraft selection in aviation industry through multi- criteria decision making methods,” Celal Bayar Üniversitesi Sosyal Bilimler Dergisi vol. 16, pp. 307– 332, December 2018.
  • [10] K. Kiracı, and M. Bakır, “Using the multi criteria decision making methods in aircraft selection problems and an application. J. Transport Logist. Vol. 3, pp. 13–24, April 2018.
  • [11] K. Kiracı, and E. Akan, “Aircraft selection by applying AHP and TOPSIS in interval type-2 fuzzy sets,” Journal of Air Transport Management, vol. 89, October 2020.
  • [12] J. M. Sánchez, and O. N. Rodríguez, “Application of fuzzy reference ideal method (FRIM) to the military advanced training aircraft selection,” Applied Soft Computing, vol. 88, March
  • [13] J. D. Maywald, A. D. Reiman, R. E. “Overstreet, and A. W. Johnson, Aircraft selection modeling: a multi-step heuristic to enumerate airlift alternatives,” Annals of Operations Research, vol. 274, pp. 425-445, March 2019.
  • [14] S. K. Ahmed, G. Sivakumar, G. Kabir, and S. M. Ali, “Regional aircraft selection integrating fuzzy analytic hierarchy process (FAHP) and efficacy method,” Journal of Production Systems and Manufacturing Science, vol. 1, pp.12-12, September 2020.
  • [15] P. Hoan, and Y. Ha, “ARAS-FUCOM approach for VPAF fighter aircraft selection,” Decision Science Letters, vol.10, pp.53-62, 2021.
  • [16] L. A. Zadeh, “Fuzzy sets” Inf. control vol.8, pp.338-353, June 1965.
  • [17] P. Miç, and Z. F. Antmen, “A healthcare facility location selection problem with fuzzy topsis method for a regional hospital,” European Journal of Science and Technology, vol.16, pp. 750-757, August 2019.
  • [18] Wu, Y., Geng, S., Zhang, H., and Gao, M., “Decision framework of solar thermal power plant site selection based on linguistic Choquet operator,” Appl. Energy vol. 136, pp. 303-311, December 2014.
  • [19] T. Gurbuz, S.E. Alptekin, and G.I. Alptekin, “A hybrid MCDM methodology for ERP selection problem with interacting criteria,” Decis. Support Syst. vol. 54, pp. 206-214, December 2012.
  • [20] L. Zhang, D. Q. Zhou, P. Zhou, and Q. T. Chen, “Modelling policy decision of sustainable energy strategies for Nanjing city: a fuzzy integral approach,” Renew. Energy vol. 62, pp. 197-203, February 2014.
  • [21] V. Pasrija, S. Kumar, and P. R. Srivastava, “Assessment of software quality: choquet integral approach” Procedia Technol. 6, pp. 153-162, 2012.
  • [22] S. Cebi, “A quality evaluation model for the design quality of online shopping websites,” Electron. Commer. Res. Appl. vol.12, pp. 124-135, April 2013.
  • [23] F. Meng, and Q. Zhang, “Induced continuous Choquet integral operators and their application to group decision making,” Comput. Industrial Eng. vol. 68, pp. 42-53, February 2014.
  • [24] H. Q. Vu, G. Beliakov, and G. Li, “A Choquet Integral Toolbox and its Application in Customers Preference Analysis,” in Data Mining Applications with R, Y. Zhao, J. Cen, Ed. Elsevier, December 2013 pp. 247-272.
  • [25] J. Wu, F. Chen, C. Nie, and Q. Zhang, “Intuitionistic fuzzy-valued Choquet integral and its application in multicriteria decision making,” Inf. Sci. vol. 222, pp. 509-527, February 2013.
  • [26] G. Büyüközkan, O. Feyzioğlu, and F. Göçer, “Selection of sustainable urban transportation alternatives using an integrated intuitionistic fuzzy Choquet integral approach,” Transportation Research Part D: Transport and Environment, vol. 58, pp. 186- 207, January 2018.
  • [27] G. Büyüközkan, and F. Göçer, “Smart medical device selection based on intuitionistic fuzzy Choquet integral,” Soft Computing, vol. 23, pp. 10085-10103, October 2019.
  • [28] P. Fortemps, and M. Roubens, “Ranking and defuzzification methods based on area compensation,” Fuzzy Sets and Systems, vol. 82, pp. 319-330, September 1996.
  • [29] S. Auephanwiriyakul, J. Keller and P. Gader, “Generalized Choquet Fuzzy Integral Fusion,” Information Fusion, vol. 3, pp. 69-85, March 2002.
  • [30] H. H. Tsai, and I. Y. Lu, “The evaluation of service quality using generalized Choquet integral,” Information Science, vol. 176, pp. 640-663, March 2006.
  • [31] M. Delgado, F. Herrera, and V. E. Herrera, “Combining Numerical and Linguistic Information in Group Decision Making,” Information Sciences, vol. 107, pp. 177–194, June 1998.
  • [32] C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods And Applications: A State of The Art Survey, Berlin: Springer, 1981.
  • [33] C. T. Chen, “Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems,” vol. 114, pp. 1-9, August 2000.