PARABOLİK SİVRİLME DAĞILIMININ BURULMASIZ BİR HELİKOPTER ROTOR PALİ ÜZERİNDEKİ ETKİSİNİN HAD ANALİZİ

Bir helikopter rotor palinin açıklığı boyunca parabolik olarak değişen sivrilme dağılımının etkisi rotor itkisi, torku ve verim ölçüsü cinsinden incelenmiştir. Birçok farklı maksimum veter uzunluğu değerleri kullanılmıştır. Reynolds Ortalamalı Navier-Stokes hesaplamaları NUMECA International tarafından geliştirilmiş olan FINE/Turbo akış çözücüsü ile yapılmıştır. Edi viskozitesini hesaplamak için Spalart-Allmaras türbülans modeli kullanılmıştır. Referans pali olarak Caradonna-Tung rotor pali seçilmiştir. Referans pal ile aynı planform alana sahip olacak şekilde muhtelif kanat açıklığı konumlarında maksimum veter uzunluğunun girdi olarak verilmesi ile farklı pal şekilleri elde edilmiştir. Üç eniyi durum gözlenmiştir: maksimum verim ölçüsü, referans verim ölçüsünde maksimum itki, referans itkide maksimum verim ölçüsü. Bu üç eniyi durum, maksimum veter uzunluğunun referans veterin 1.3 katı olduğu koşulda görülmüştür.

CFD ANALYSIS OF THE EFFECT OF PARABOLIC TAPER DISTRIBUTION OF AN UNTWISTED HELICOPTER ROTOR BLADE

The effect of parabolic taper distribution along the span of a helicopter rotor blade is analyzed in terms of therotor thrust, torque and Figure of Merit. Various maximum chord length values are investigated. The ReynoldsAveraged Navier-Stokes computations are done using the FINE/Turbo flow solver developed by NUMECAInternational. The Spalart-Allmaras turbulence model is used to calculate the eddy viscosity. The baseline bladeis selected as the Caradonna-Tung rotor blade. Different blade shapes were generated by setting the maximumchord length at different spanwise locations for the same planform area as the baseline blade. Three optimumcases are observed: maximum Figure of Merit, maximum thrust for the baseline Figure of Merit and maximumFigure of Merit for the baseline thrust. Those optimum cases are noticed when the maximum chord length is 1.3times the baseline blade chord length.

___

  • Giovanetti E.B. & Hall K.C., “Minimum Loss Load, Twist, and Chord Distributions for Coaxial Helicopters in Hover,” Journal of the American Helicopter Society, Vol. 62, 012001, 2017.
  • NUMECA International. “IGG/AutoGrid5 Software Package,” ver.11.2rc, User Manual, 2017.
  • NUMECA International, “FINE/Turbo Software Package,” ver.11.2rc, User Manual, 2017.
  • Caradonna F. X. & Tung C., “Experimental and Analytical Studies of a Model Helicopter Rotor in Hover,” Army Aeromechanics Laboratory’s hover test facility, NASA Technical Memorandum 81 232, 1981.
  • Elfarra M., Kaya M., & Kadioglu F., “A Parametric CFD Study for the Effect of Spanwise Parabolic Chord Distribution on the Thrust of an Untwisted Helicopter Rotor Blade,” 2018 AIAA Aerospace Sciences Meeting, 8–12 January 2018, Kissimmee, Florida, 2018.
  • Yucekayali A., Ezertas A. & Ortakaya Y., “Whirl Tower Testing and Hover Performance Evaluation of a 3 Meter Radius Rotor Design,” 7th Ankara International Aerospace Conference, 11-13 September 2013 - METU, Ankara Turkey, AIAC- 2013-142, 2013.
  • Mohd N.A.R.N. & Barakos G., “Computational Aerodynamics of Hovering Helicopter Rotors,” Jurnal Mekanikal, No 34, pp. 16-46, 2012.
  • Steijl R., Barakos G. & Badcock K., “A framework for CFD analysis of helicopter rotors in hover and forward flight,” Int. J. Numer. Meth. Fluids, Vol. 51, pp. 819–847, 2006.
  • Vua N.A. & Leeb J.W., “Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight,” Vol. 42, pp. 106–117, 2015.
  • Walsh J.L., Bingham G.J. & Riley M.F., “Optimization Methods Applied to the Aerodynamic Design of Helicopter Rotor Blades,” Journal of the American Helicopter Society, Vol. 32, No. 4, pp. 39- 44(6), 1987.
  • McVeigh M.A. & McHugh, F.J., “Influence of Tip Shape, Chord, Blade Number, and Airfoil on Advanced Rotor Performance,” Journal of the American Helicopter Society, Vol. 29, No. 4, 55- 62(8), 1984.
  • Choi S., Lee K., Potsdam, M.M. & Alonso J.J., “Helicopter Rotor Design Using a Time-Spectral and Adjoint-Based Method,” Journal Of Aircraft, Vol. 51(2), pp. 412-423, 2014.
  • Allen C.B. & Rendall T.C.S., “CFD-based optimization of hovering rotors using radial basis functions for shape parameterization and mesh deformation,” Optim Eng, Vol. 14, pp. 97–118, 2013.
  • Dumont A., Le Pape A., J. Peter & Huberson, S., “Aerodynamic Shape Optimization of Hovering Rotors Using a Discrete Adjoint of the Reynolds- Averaged Navier–Stokes Equations,” Journal Of The American Helicopter Society, Vol. 56, 032002, 2011.
  • Le Pape A. & Beaumier P., “Numerical optimization of helicopter rotor aerodynamic performance in hover,” Aerospace Science and Technology, Vol. 9, pp. 191–201, 2005.
  • Conlisk AT., “Modern helicopter aerodynamics,” Annual Review of Fluid Mechanics, Vol. 29, pp. 515 – 567, 1997.
  • Allen CB., “An unsteady multiblock multigrid scheme for lifting forward flight rotor simulation,” International Journal for Numerical Methods in Fluids, Vol. 45(9), pp. 943 –984, 2004.
  • Srinivasan GR & Baeder JD., “TURNS: a free- wake Euler–Navier–Stokes numerical method for helicopter,” AIAA Journal, Vol. 31(5), pp. 959 –962, 1993.
  • Chen CL, McCroskey WJ & Obayashi S., “Numerical solutions of forward-flight rotor flow using an upwind method,” Journal of Aircraft, Vol.28(6), pp. 374 –380, 1991.
  • Park Y. & Kwon O., “Simulation of unsteady rotor flowfield using unstructured adaptive sliding meshes,” Journal of the American Helicopter Society, Vol. 49(4), pp. 391– 400, 2004.
  • Servera G, Beaumier P & Costes M., “A weak coupling method between the dynamics code HOST and the 3D unsteady Euler code WAVES,” Aerospace Science and Technology, Vol. 5, pp. 397– 408, 2001.
  • Pomin H & Wagner S., “Navier–Stokes analysis of helicopter rotor aerodynamics in hover and forward flight,” Journal of Aircraft, Vol. 39(5), pp. 813–821, 2002.
  • Gecgel M., “Modeling and simulation of coaxial helicopter rotor aerodynamics,” PhD thesis, Old Dominion University, 2009.
  • Renzoni R, D’Alascio A, Kroll N, Peshkin D, Hounjet M, Boniface J-C, Vigevano L, Morino L, Allen CB, Badcock KJ, Mottura L, Scholl M & Kokkalis E., “A common European Euler code for the analysis of the helicopter rotor flowfield,” Progress in Aerospace Sciences, Vol. 36, pp. 437– 485, 2000.
Havacılık ve Uzay Teknolojileri Dergisi-Cover
  • ISSN: 1304-0448
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2003
  • Yayıncı: Dr. Öğr. Üyesi Fatma Kutlu Gündoğdu
Sayıdaki Diğer Makaleler

İLERİ UÇUŞTAKİ HELİKOPTER ROTORLARI ETRAFINDAKİ DAİMİ OLMAYAN AKIŞ ALANLARININ ANALİZ EDİLMESİ İÇİN BİR METODOLOJİ

Yavuz NACAKLI, Murat GEÇGEL

A NUMERICAL MODEL FOR BALLISTIC IMPACT RESPONSE OF COMPOSITE ARMORS

DEMET BALKAN, SEHER EKEN

DESIGN AND MODELLING OF NANO AERIAL VEHICLE HUMMINGBIRD MECHANISM ON HOVER FLIGHT

İbrahim H. GÜZELBEY, Müslüm ÖZKESİCİLER, AHMET ŞUMNU

İNSANSIZ HAVA ARACININ 2 BOYUTLU ÇİZGİSEL YÖRÜNGE TAKİBİ VE SİMÜLASYONU

Mehmet Şerif KAVSAOĞLU, Uğur ÖZDEMİR, Zafer ÖZNALBANT

A CONCEPTUAL FRAMEWORK FOR BUYER-SUPPLIER INTEGRATION STRATEGIES AND THEIR ASSOCIATION TO THE SUPPLIER SELECTION CRITERIA IN THE LIGHT OF SUSTAINABILITY

FUNDA SEÇKİN, Ceyda GÜNGÖR ŞEN

AKCİĞER KANSERİ RİSKİ ANALİZİ İÇİN K-ORTALAMA KÜMELENMESİ KULLANAN YAPAY SİNİR AĞ MODELİ TASARIMI

Atınç YILMAZ, Ediz ŞAYKOL, Umut KAYA

ALICI-TEDARİKÇİ ENTEGRASYON STARTEJİLERİ İÇİN KAVRAMSAL TASARIM GELİŞTİRİLMESİ VE SÜRDÜRÜLEBİLİRLİK ÇERÇEVESİNDE TEDARİKÇİ SEÇİM KRİTERLERİ İLE ENTEGRASYON STRATEJİLERİNİN İLİŞKİLENDİRİLMESİ

Funda SEÇKİN, Ceyda GÜNGÖR ŞEN

NANO HAVA ARACI SİNEKKUŞU MEKANİZMASININ HAVADA ASKIDA KALMA HAREKETİNİN TASARIMI VE MODELLENMESİ

Ahmet ŞUMNU, İbrahim H. GÜZELBEY, Müslüm ÖZKESİCİLER

İÇTEN YANMALI MOTORLARDA HAVA YAKIT ORANININ ZAMAN GECİKMELERİNE DAYANIKLI KAPALI DÖNGÜ REFERANS MODELLİ UYARLAMALI KONTROLÜ

Yıldıray YILDIZ

PARABOLİK SİVRİLME DAĞILIMININ BURULMASIZ BİR HELİKOPTER ROTOR PALİ ÜZERİNDEKİ ETKİSİNİN HAD ANALİZİ

Munir ELFARRA, Mustafa KAYA