KAPALI KOMPOZİT KESİTLERİN KATILIK ÖZELLİKLERİNİ KLASİK LAMİNASYON TEORİSİ YARDIMIYLA HESAPLAYAN BİR YÖNTEM

Kompozit rüzgar türbini kanatlarının deformasyonlarırotor aerodinamik performansını etkilemektedir.Kanatlarda daha yüksek verimlilik, iyi aerodinamik performans vemekanikyüklerin azaltılması için operasyonel yükler altında kanat davranışının anlaşılması önem arz etmektedir. Bu etkileşimi anlayabilmek için kompozit yapılar ve aerodinamik alanlarında disiplinlerarası bir çalışma yapılmasıgereklidir. Bu makale yapısal tarafa odaklanmıştır ve kapalı kompozit bir kesitin katılık özelliklerinin hesabı için uygulaması kolay bir yöntem gösterilmiştir. Yöntem, Klasik Laminasyon Teorisi (KLT) tabanlıdır ve kesitin ince cidarlı olduğu kabul edilmiştir, gerilme yığılmaları ve çarpılma ihmal edilmiştir. Ön tasarım aşamasında farklı laminasyonlar ve malzemelerileeğilme ve burulma katılıkları hesaplanabildiği gibi eğilme-burulma etkileşimi de incelenebilmektedir. Makalede bir NACA profili üzerinde bahsedilen yöntemle çeşitli çalışmalar yapılmıştır. Bu makale türbin kanatlarında hava-yapı etkileşimi ve rotor performansına etkilerini irdeleyen bir çalışmanın ilk fazını kapsamaktadır.

A METHOD BASED ON CLASSICAL LAMINATION THEORY TO CALCULATE STIFFNESS PROPERTIES OF CLOSED COMPOSITE SECTIONS

Structural deformation ofcomposite wind turbine blades affect the aerodynamic performance of the rotor. To design better blades in terms of efficiency, aerodynamic performance and load mitigation, it is crucial to understand how blades act under operational loads. An interdisciplinary research should be conducted including composite structures and aerodynamics to analyze this interaction. This article focuses on the structural part and explains an easy to apply method to define sectional properties of a closed composite section. The method is based on Classical Lamination Theory (CLT) and it is assumed that the blade is a thin walled structure. Stress concentration and warping effects are ignored. During preliminary design phase, this method is useful to calculate bending and torsional stiffness values based on different lamination parameters and materials, it can also be used to investigate bending-torsion coupling effects. This article also includes parametric studies on NACA profiles using the method explained. This is the first phase of a study investigating aero-structure interaction in wind turbine blades and its effects on rotor performance.

___

  • [25] JeonM., Lee S. and Lee S.,(2014),“Unsteady vortex lattice method coupled with a linear aeroelastic model for horizontal axis wind turbine”, J. Renewable Sustainable Energy 6, 042006.
  • LeeY., Jhan Y., Chung C.,(2012),“Fluid–structure interaction of FRP wind turbine blades under aerodynamic effect”, Composites Part B: Engineering, Volume 43, Issue 5,2012, Pages 2180–2191.
  • Jeong, M., Yoo, S., Lee, I., (2011),“Aeroelastic Analysis for Large Wind Turbine Rotor Blades”, 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th,4 -7 April 2011, Denver, Colorado.
  • Tingrui, L.ve Yongsheng, R., (2010),“Vibration and flutter of wind turbine blade modeled as anisotropic thin-walled closed-section beam”,Mechanical & Electronical Institute, Shandong University of Since & Technology, Qingdao, China
  • Park, A. J., Jung, S. N., (2009), “General Purpose Cross-section Analysis Program for Composite Rotor Blades”, International Journal of Aeronautical & Space Sciences,Volume 10, No:2, November 2009.
  • Chen, H., Yu, W., Capellaro, M., (2009),“Acritical assessment of computer tools for calculating composite wind turbine blade properties”, Wind Energy,(2009), DOI: 10.1002/we.372.
  • Maheri, A., Noroozi, S., Vinney, J., (2006),“Decoupled aerodynamic and structural design of wind turbine adaptive blades”, Renewable Energy 32 (2007) 1753-1767, Elsevier.
  • Maheri, A., Noroozi, S., Vinney, J., (2007),“Application of combined analytical/FEA coupled aero-structure simulation in design of wind turbine adaptive blades”, RenewableEnergy 32 (2007) 2011-2018.
  • Maheri, A., Noroozi, S., Vinney, J., (2007), “Combined analytical/FEA-based coupled aero structure simulation of a wind turbine with bend–twist adaptive blades”, Renewable Energy 32(2007) 916–930, Elsevier.
  • Maheri, A., Noroozi, S., Toomer, C., Vinney, J.,(2006). “WTAB, a computer program for predicting the performance of horizontal axis wind turbines with adaptive blades”, Renewable Energy 31 (2006) 1673–168.
  • Volovoi, V. V., Hodges, D. H., Cesnik, C. E. S., Popescu, B.,(2001). “Assessment of Beam Modeling Methods for Rotor Blade Applications”, Mathematical and Computer Modelling 33 (2001) 1099-1112.
  • Volovoi V.V. andHodges D.H., (2002) “Single and multi-celled composite thin-walled beams”, AIAA J;40(5):960–6.
  • Volovoi V.V. andHodges D.H., (2000)“Theory of anisotropic thin-walled beams”,J.AppliedMechanics;67(3):453–459.
  • Ong, C. H. and Tsai, S. W. (1998), “Elastic Tailoring of a Composite D-Spar”, Sandia National Laboratories, Report No: SAND98-1750.
  • Lobitz. D. W. andVeers, P. S., (1998),“Aeroelastic Behavior ofTwist-Coupled Hawt Blades”, Sandia National Laboratories,Albuquerque, New Mexico 87185-0439.
  • Lee, A. ve Flay, R., (1998). “Compliant blades for wind turbines”, IPENZ Transactions, 1999, Vol. 26, No. 1/EMCh.
  • Chandra, R. and Chopra, I.,(1992)“Structural behavior of two-cell composite rotor blades with elastic couplings”,AIAA Journal, Vol. 30, No. 12, pp. 2914-2921.
  • Armanios, E. A. and Badir, A. M., (1995)“Free Vibration Analysis of Anisotropic thin walled closed section beams”, AIAA Journal, Vol. 33, No. 10, pp. 1905-1910.
  • Karaolis, N.M., Jeronimidis, G., Musgrove, P. J., (1989)“Composite wind turbine blades: coupling effects and rotor aerodynamic performance”, EWEC 1989 Proceedings.
  • Librescu, L. and Song, O.,(2006)“Thin-walled composite beams: theory and application”, Springer.
  • Vasiliev, V.V. and Morozov, E. V., (2001)“Mechanics and Analysis of Composite Materials”, Elsevier.
  • Kollar, L. P. and Springer, G. S., (2003)“Mechanics of Composite Structures”, Cambridge University Press.
  • Daniel, I. M. and Ishai, O., (1994)“Engineering Mechanics of Composite Materials”, Oxford University Press.
  • Kaw, A. K., (2006)“Mechanics of Composite Materials”, Taylor & Francis, 2ndEdition.
  • Jones, R. M., (1998)“Mechanics of composite materials”, Taylor & Francis, 2ndEdition.