SAVAŞ UÇAĞI GÖREV HAYATTA KALABİLİRLİĞİNİN OLASILIKSAL GRAFİKSEL MODELLER İLE HESAPSAL OLARAKVERİMLİ ANALİZİ

Bu makalede savaş uçağı hayatta kalabilirliği için olasılıksal bir model geliştirilmiştir. Görev hayatta kalabilirliği analizi savaş uçağının hem dizayn hem de performans tespiti aşamalarında kritik bir süreçtir. Savaş uçağı çevikliği ve manevra kabiliyeti gibi standart olasılıksal olmayan ölçütler görev hayatta kalabilirliği analizi için yetersiz kalmaktadır. Çünkü hayatta kalabilirlik analizi uçağın yeteneklerine bağlı olduğu kadar görev alanındaki tehditlerin ve sensörlerin pozisyonları ve yeteneklerine de bağlıdır. Tehditlerin ve sensörlerin dinamiklerindeve konumlarındaki belirsizliklerden dolayı, geçmişteki birçok çalışma bu öğeleri olasılıksal modeller kullanarak modellemiştir. Fakat mevcut modellerin çoğu ya problemi fazlasıyla sadeleştirmekte, ya da örneklemesi ve işlemesi çok zor olan yüksek boyutlu olasılık dağılımları vermektedir. Bu çalışmada mevcut literatürde bulunan bir takım sensör ve tehdit modelleri bir araya getirilerek bir olasılıksal grafiksel model olarak sunulmuştur. Olasılıksal grafiksel modellerbirçok sensör ve tehdidin bulunduğu geniş çaplı senaryolarda bilehesapsal açıdan verimlihayatta kalabilirlikMonte Carlo analizlerine ve çıkarımlarının yapılmasına olanak vermektedir. Ayrıca, geliştirilen metodun belirlenmiş olan bir hayatta kalma oranı için uçağın performans parametrelerinin ne olması gerektiği ile ilgili ters problemi de çözebildiği gösterilmiştir.

COMPUTATIONALLY EFFICIENT ASSESMENT OF FIGHTER AIRCRAFT MISSION SURVIVABILITY WITHPROBABILISTIC GRAPHICAL MODELS

This paper proposes a probabilistic model for assessment of fighteraircraft mission survivability. Mission survivability analysis is a critical phase for both design of the fighter aircraft and evaluation of its performance. The standard deterministic performance metrics such as aircraft agility and manoeuvrability are not sufficient to measure mission survivability, since the probability of aircraft surviving the missions depends heavily on lethality and position of threats, such as surface to air missile systems. Since the dynamics and parameters of the threats are mostly uncertain, previous worksproposed several different probabilistic models for modelling the mission survivability of fighter aircraft under uncertain threats. However, most of the existing models either oversimplify the problem or leads toin complicated high dimensional probability distributions, which are unfeasible for evaluation of large-scale missions. In this study, we fuse the threat and sensormodels from several existing works and show that the mission survivability can be modelled as a probabilistic graphical model, which enables rapid sampling and Monte Carlo evaluation of survivability, even on large-scale missions that involve many different threat andsensor networks. In addition, we show that graphical representation can also be used for addressing the inverse problem of determining required aircraft performance parameters for a specified survivability rate.

___

  • Ure,N. Kemal, and Gokhan Inalhan. "Predictive missile guidance for agile maneuvering targets with stochastic hybrid dynamics." Aerospace Conference, 2016 IEEE. IEEE, 2016.
  • Ure, N. Kemal, and Gokhan Inalhan. "Autonomous Control of Unmanned Combat Air Vehicles: Design of a Multimodal Control and Flight Planning Framework for Agile Maneuvering." IEEE Control Systems 32.5 (2012): 74-95.
  • Liefer, Randall K., et al. "Fighter agility metrics, research and test." Journal of Aircraft 29.3 (1992): 452-457.
  • Andrieu, Christophe, et al. "An introduction to MCMC for machine learning." Machine learning 50.1-2 (2003): 5-43.
  • Beal, Matthew James. Variational algorithms for approximate Bayesian inference. London: University of London, 2003.
  • Jensen, Finn V. An introduction to Bayesian networks. Vol. 210. London: UCL press, 1996.
  • Bishop, Christopher M. "Pattern recognition." Machine Learning 128 (2006).
  • Randleff, Lars Rosenberg. Decision support system for fighter pilots. DTU Informatics, 2008.
  • Erlandsson, Tina, and Lars Niklasson. "Automatic evaluation of air mission routes with respect to combat survival." Information Fusion 20 (2014): 88-98.
  • Kabamba, Pierre T., Semyon M. Meerkov, and Frederick H. Zeitz. "Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking." Journal of Guidance, Control, and Dynamics 29.2 (2006): 279-288.
  • Theunissen, Erik, Fok Bolderheij, and G. J. M. Koeners. "Integration of threat information into the route (re-) planning task." 24th Digital Avionics Systems Conference. Vol. 2. IEEE, 2005.
  • Orgen, P., and Maja Winstrand. "Combining path planning and target assignment to minimize risk in a SEAD mission." AIAA Guidance, Navigation, and Control Conf. 2005.
  • Koyuncu, Emre, and Gokhan Inalhan. "Exploiting delayed and imperfect information for generating approximate uav target interception strategy." Journal of Intelligent & Robotic Systems 69.1-4 (2013): 313-329.
  • Jun, Myungsoo, and Raffaello D’Andrea. "Path planning for unmanned aerial vehicles in uncertain andadversarial environments." Cooperative control: models, applications and algorithms. Springer US, 2003. 95-110.
  • Chandler, Phillip, Steven Rasmussen, and Meir Pachter. "UAV cooperative path planning." AIAA Guidance, Navigation, and Control Conference and Exhibit. 2000.
  • Beard, Randal W., et al. "Coordinated target assignment and intercept for unmanned air vehicles." IEEE transactions on robotics and automation 18.6 (2002): 911-922.
  • Mattei, Massimiliano, and Luciano Blasi. "Smooth flight trajectory planning in the presence of no-fly zones and obstacles." Journal of guidance, control, and dynamics 33.2 (2010): 454-462.
  • Goossens, A. A. H. E. "Development and evaluation of level 3 situation awareness support functions for a UAV operator station." Digital Avionics Systems Conference, 2004. DASC 04. The 23rd. Vol. 2. IEEE, 2004.
  • Koller, Daphne, and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.
  • Przemieniecki, John S. Mathematical methods in defense analyses. Aiaa, 2000.
  • Ball, Robert E. The fundamentals of aircraft combat survivability analysis and design. AIAA (American Institute of Aeronautics & Astronautics), 2003.
  • Paterson, John. "Overview of low observable technology and its effects on combat aircraft survivability." Journal of Aircraft 36.2 (1999): 380-388.