Flexure Analysis of Functionally Graded Plates Using {2,2}-Refined Zigzag Theory

This study investigates the flexure analysis of functionally graded (FG) plates using {2,2}-refined zigzag plate theory which considers transverse normal deformation along the thickness of plates. This element eliminates the use of the shear correction factors. The FG plate is composed of silicon carbide (SiC) and aluminum (Al) varying through the thickness of the plate. The volume fractions of the material constituents in the FG plate were functionally tailored based on a power-law. The effective material properties of the plate were evaluated by using the Mori-Tanaka homogenization method. The accuracy of the present approach was demonstrated by considering a simply supported FG plate under distributed sinusoidal load. The influence of the through-thickness material variation on the stress and displacement distributions was investigated. It was observed that the material variation through the thickness played a major role on the stress and displacement levels whilst the influence of the material variation was minor on the stress and displacement profiles.

Geliştirilmiş Zigzag Teorisi Kullanarak Fonksiyonel Kademelendirmiş Plakların Eğilme Analizleri

Bu çalışma, plakların kalınlığı boyunca normal şekil değiştirmesini dikkate alan {2,2}-geliştirilmiş zigzag plak teorisini kullanarak fonksiyonel olarak derecelendirilmiş (FG) plakların eğilme analizini incelemektedir. Bu eleman kayma düzeltme faktörleri gerektirmez. Fonksiyonel kademelendirilmiş plak, kalınlığı boyunca değişen silisyum karbür (SiC) ve alüminyumdan (Al) oluşmaktadır. Fonksiyonel kademelendirilmiş plakın malzeme bileşenlerinin hacim oranları, bir güç yasasına göre işlevsel olarak uyarlanmıştır. Plakın etkili malzeme özellikleri Mori-Tanaka homojenizasyon metodu kullanılarak belirlenmiştir. Mevcut yaklaşımın doğruluğu, sinüzoidal yayılı yük altında basitçe desteklenen bir fonksiyonel kademelendirilmiş plak göz önüne alınarak gösterilmiştir. Kalınlıktaki malzeme değişiminin gerilme ve yer değiştirme dağılımlarına etkisi araştırıldı. Kalınlıktaki malzeme değişiminin, gerilme ve yer değiştirme seviyeleri üzerinde önemli bir rol oynadığı, malzeme değişiminin etkisinin ise gerilme ve yer değiştirme profilleri üzerinde küçük olduğu gözlenmiştir.

___

[1] Koizumi M. “FGM activities in Japan,” Compos Part B: Eng, Vol.7, No:28, 1-4, 1997.

[2] Aboudi J. and Pindera MJ., Arnold SM., “Higherorder theory for functionally graded materials,” Compos Part B: Eng, Vol.30, 777-832, 1999.

[3] Tessler, A., Di Sciuva, and M., Gherlone, M., “A consistent refinement of first-order shear-deformation theory for laminated composite and sandwich plates using improved zigzag kinematics”, J. Mech Mat Struct, Vol. 5, 341-367, 2010.

[4] Tessler, A., Di Sciuva, M., and Gherlone, M., “A refined zigzag beam theory for composite and sandwich beams”, J. Compos Mat, Vol. 43, 1051-1081, 2009.

[5] Tessler, A., Di Sciuva, M., and Gherlone, M., “A homogeneous limit methodology and refinements of computationally efficient zigzag theory for homogeneous, laminated composite, and sandwich plates”, Numer Methods Partial Differ Equ, Vol. 27, 208- 229, 2011.

[6] Gherlone, M., Tessler, A., and Di Sciuva, M. “C0 beam elements based on the refined zigzag theory for multilayered composite and sandwich laminates”, Compos Struct, Vol. 93, 2282-2294, 2011.

[7] Onate, E., Eijo, A., and Oller, S. “Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory”, Comput Methods Appl Mech Eng, Vol. 213–216, 362-382, 2012.

[8] Versino, D. Gherlone, M., Mattone, M., Di Sciuva, M., and Tessler, A. “C0 triangular elements based on the refined zigzag theory for multilayered composite and sandwich plates”, Compos Part B: Eng, Vol.44, 218-230, 2013.

[9] Barut, A., Madenci, E., and Tessler, A., “A refined zigzag theory for laminated composite and sandwich plates incorporating thickness stretch deformation”, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, Paper No. AIAA-2012-1705, 2012.

[10] Barut A, Madenci E, and Tessler A “C0-continuous triangular plate element for laminated composite and sandwich plates using the {2,2}- refined zigzag theory”, Compos Struct, Vol. 106, 835-853, 2013.

[11] Barut, A., Madenci, E., and Tessler, A., “Prediction of composite laminate strength properties using a refined zigzag plate element”, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, Massachusetts, Paper No. AIAA- 2013-1539, 2013.

[12] Dorduncu, M, Atila Barut, A., and Madenci, E., “Failure prediction in sandwich panels under blast loading using a refined zigzag element”, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, Massachusetts, Paper No. AIAA-2013-1551, 2013.

[13] Kilic, B., Barut, A., and Madenci, E., “Post assembly warpage prediction using a refined zigzag element, 63rd Electronic Components & Technology Conference, Las Vegas, NV, 2255-2258, 2013.

[14] Barut, A., Madenci, E., and Tessler, A., “Postbuckling response of scarf repaired laminates using a refined zigzag element,” 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, National Harbor, Maryland, Paper No. AIAA 2014-0847, 2014.

[15] Dorduncu, M., Barut, A., Madenci, E., and Tessler, A., “A refined zigzag element for modeling sandwich construction with embedded stiffeners,” 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, Paper No. AIAA-2015-2072, 2015.

[16] Udupa, G., Rao, SS., and Gangadharan KV., “Functionally graded composite materials: an overview,” Procedia Materials Science, Vol.5, 1291-1299, 2014.

[17] Pan E., “Exact solution for functionally graded anisotropic elastic composite laminates,” J Compos Mat, Vol.37, No. 21, 1903-1920, 2003.

[18] Dorduncu, M., Apalak, MK., and Cherukuri, HP, “Elastic wave propagation in functionally graded circular cylinders,” Compos Part B: Eng, Vol.73, 35-48, 2015.

[19] Kara, HF. and Aydogdu, M, “Dynamic response of a functionally graded tube embedded in an elastic medium due to sh-waves,” Compos Struct, Vol.206, 22-32, 2018.

[20] Swaminathan K, Naveenkumar DT., Zenkour AM., and Carrera E., “Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review,” Compos Struct, Vol.120, 10-31, 2015.

[21] Reddy JN., “Analysis of functionally graded plates,” Int J Numer Meth Eng, Vol.684, 663-684, 2000.

[22] Zenkour AM., “Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate,” Arch Appl Mech, Vol.77, 197-214, 2006.

[23] Nguyen TK., Sab K., and Bonnet G., “First-order shear deformation plate models for functionally graded materials,” Compos Struct, Vol.83, 25-36, 2008.

functionally graded plates using third-order shear deformation theory and a meshless method,” Compos Struct, Vol.69, 449-457, 2005.

[25] Iurlaro L., Gherlone M., and Di Sciuva M., “Bending and free vibration analysis of functionally graded sandwich plates using the refined zigzag theory,” J Sandw Struct Mater, Vol.16, 669-699, 2014.

[26] Mori T., Tanaka K., “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall, Vol.21, 571-574, 1973.

[27] Tessler, A., “An improved plate theory of {1,2}-order for thick composite laminates,” Int J Solids Struct, Vol. 30, 981–1000, 1993.

[28] Anderson, T., Madenci, E., Fish, J., and Burton, S.W., “Analytical solution of finite-geometry composite panels under transient surface loading,” Int J Solids Struct, Vol. 35, 1219–1239, 1998.