Aerodynamic Performance Losses due to Ice Formation on the UAV’s Wings

Ice accretion on unmanned air vehicle’s wing modifies the initial airfoil contour and changes the aerodynamic characteristic of the wing. The aim of this research is to calculate performance losses on a wing due to the accretion of rime ice. In this study, ice formation on NREL S826 airfoil is predicted by using ice accretion tool. The computed aerodynamic loads are compared for clean wings and iced wings with different aspect ratios. The computations are based on the lifting-line method. According to the results, predicted aerodynamic performance loss is higher for small aspect ratio than that of the bigger for the rime ice.

İHA Kanatlarında Buz Oluşumu Kaynaklı Aerodinamik Performans Kayıpları

İnsansız hava araçları kanat profili üzerinde oluşan buzlanma başlangıç kanat profilini değiştirerek, kanadın aerodinamik karakteristiğini değiştirir. Bu çalışmanın amacı, buzlanma oluşumundan dolayı bir kanattaki performans kayıplarını hesaplamaktır. Bu çalışmada NREL S826 kanat profili üzerindeki buz oluşumu, buz birikim hesaplama aracı kullanılarak tahmin edilmektedir. Hesaplanan aerodinamik yükler, farklı açıklık oranlarına sahip temiz ve buzlu kanatlar için karşılaştırılmıştır. Hesaplamalar taşıyıcı çizgi yöntemine dayanmaktadır. Karsı tipi buzlanma koşullarında elde edilen sonuçlara göre, tahmin edilen aerodinamik performans kaybı küçük açıklık oranına sahip kanat için daha yüksektir.

___

[1] NASA, Icing Research Tunnel (IRT), https://www.nasa.gov/aeroresearch/programs/aavp/aetc/ subsonic/icing/gallery, [Accessed: June 11, 2020].

[2] PPRUNE forum, https://www.pprune.org/5523181- post48.html, [Accessed: June 11, 2020].

[3] C. Hochart, G. Fortin, J. Perron, A. Ilinca, “Wind Turbine Performance under Icing Conditions,” Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology vol. 11, no. 4, pp. 319-333, 2008.

[4] W. J. Jasinski, S. C. Noe, M. S. Selig, M. B. Bragg, “Wind Turbine Performance under Icing Conditions,” Journal of Solar Energy Engineering vol. 120, pp. 60-65, 1998.

[5] F. T. Lynch, A. Khodadoust, “Effects of Ice Accretions on Aircraft Aerodynamics,” Progress in Aerospace Sciences vol. 37, pp. 669-767, 2001.

[6] M. Bragg, T. Hutchinson, J. Merret, R. Oltman, D. Pokhariyal, ”Effects of Ice Accretion on Aircraft Flight Dynamics,” In: 38th AIAA, Aerospace Sciences Meeting & Exhibit, Reno, NV, 2000.

[7] R. Hann, R. J. Hearst, L. R. Saetran, T. Bracchi, “Experimental and Numerical Icing Penalties of an S826 Airfoil at Low Reynolds Numbers,” Aerospace, pp. 7-4, 2020.

[8] Y. Han, J. Palacios, “Analytical and Experimental Determination of Airfoil Performance Degradation due to Ice Accretion,” AIAA Atmospheric and Space Environments Conf, New Orleans, 2012.

[9] A. P. Broeren, E. A. Whalen, G. T. Busch, M. Bragg, “Aerodynamic Simulation of Runback Ice Accretion,” J. Aircr. vol. 47, pp. 924–939, 2010.

[10] K. Szilder, W. Yuan, “The Influence of Ice Accretion on the Aerodynamic Performance of a UAS Airfoil,” In53rd AIAA Aerospace Sciences Meeting, p. 0536, 2015.

[11] R. Hann, A. Wenz, K. Gryte, T.A. Johansen, ", Impact of Atmospheric Icing on UAV Aerodynamic Performance" in Proc. of the 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), October 3-5, Linköping, Sweden, 2017.

[12] O. Yirtici, S. Ozgen, I. H. Tuncer, “Predictions of Ice Formations on Wind Turbine Blades and Power Production Losses due to Icing,” Wind Energy vol. 22, pp. 945-958, 2019

[13] O. Yirtici, K. Cengiz, S. Ozgen, I. H. Tuncer, “Aerodynamic Validation Studies on the Performance Analysis of Iced Wind Turbine Blades,” Computers & Fluids 192, 104271, 2019.

[14] D. Mark, web.mit.edu/drela/public/web/xfoil/, http://web.mit.edu/drela/Public/web/xfoil/, [Accessed: Novamber 11, 2019].

[15] S. Ozgen, M. Canıbek, “Ice Accretion Simulation on Multi-Element Airfoils using Extended Messinger Model,” Heat and Mass Transfer vol. 45, pp. 305, 2009.

[16] T. G. Myers, “Extension to the Messinger Model for Aircraft Icing,” AIAA journal vol. 39, pp. 211-218, 2001.

[17] S. Ozgen, M. Canıbek, “In Flight Icing Simulation with Supercooled Large Droplet Effects,” 7th Int. Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Antalya, Turkey, 2010.

[18] Anderson Jr, John D., Stephen Corda, and David M. Van Wie, “Numerical Lifting Line Theory Applied to Drooped Leading-Edge Wings Below and Above Stall,” Journal of Aircraft vol. 17, no. 12, pp. 898-904, 1980.

[19] D. S. Körpe and Ö. Ö. Kanat, “Aerodynamic Optimization of a UAV Wing subject to Weight, Geometric, Root Bending Moment, and Performance Constraints,” International Journal of Aerospace Engineering, 2019.

[20] G. Brown, “Xfoil Interface”, Available: https://www.mathworks.com/matlabcentral/fileexchange /30446-xfoil-interface, MATLAB Central File Exchange. Retrieved May 5, 2020.

[21] F. Mahmuddin, S. Klara, H. Sitepu, S. Hariyanto, "Airfoil Lift and Drag Extrapolation with Viterna and Montgomerie Methods." Energy Procedia vol. 105, pp. 811-816, 2017.

[22] J. F. Herbert-Acero, O. Probst, C. L. Rivera-Solorio, K. K. Castillo-Villar and S. Méndez-Diaz, “An Extended Assessment of Fluid Flow Models for the Prediction of Two-Dimensional Steady-State Airfoil Aerodynamics,” Mathematical Problems in Engineering, 2015.