Performance Characteristics of Turkey’s First 1,5 kW Hall Thruster Electric Propulsion System

Due to significant advantages and successful applications, electric propulsion has become a key technology for both scientific and commercial space missions. Nowadays, almost every satellite is equipped with an electrical propulsion subsystem for the purposes of orbit transfer, orbit correction, collision avoidance, and performing stating-keeping maneuvers. Considering these advances in space propulsion technology, TUBITAK UZAY initiated a project to establish an electric propulsion test facility and develop a Hall thruster propulsion system (HALE Project). In the scope of the project, Turkey’s first qualification test model electric propulsion system has been developed in Turkey’s very first electric propulsion laboratory. The facility has all necessary equipment to test Hall Thruster systems up to 5 kW power. The developed Hall thruster propulsion system is optimized to be operated at 1350 W providing minimum 75 mN thrust and 1500 s specific impulse. The paper summarizes all related R&D activities and presents performance of the developed equipment.

Türkiye’nin İlk 1,5 kW Hall Tipi Elektrikli İtki Sistemi Performans Özellikleri

Elektrikli itki, önemli avantajları ve başarılı uygulamalarından dolayı bilimsel ve ticari uzay görevlerinde kilit teknoloji haline gelmiştir. Günümüzde, hemen hemen her uydu, yörünge transferi, düzeltmesi, koruması ve çarpışmadan kaçınma manevralarını gerçekleştirmek amacıyla elektrikli itki sistemiyle donatılmıştır. İtki teknolojisindeki bu gelişmeleri dikkate alarak, TÜBİTAK UZAY, Türkiye’de elektrikli itki test altyapısı kurmak ve bir Hall Etkili itki sistemi geliştirmek amacıyla proje başlatmıştır (HALE Projesi). Projede, Türkiye'nin ilk yeterlilik modeli elektrikli itki sistemi Türkiye'nin ilk elektrikli itki sistemi geliştirme laboratuvarında başarıyla geliştirilmiştir. Tesis 5 kW güce kadar çalışan elektrikli itki sistemlerini test edebilecek tüm ekipmanlara sahiptir. Geliştirilen Hall tipi elektrikli itki sistemi 1350 W’ta çalışmak ve en az 75 mN itki kuvveti ile 1500 özgül itkiyi sağlamak üzere optmize edilmiştir. Bu makale gerçekleştirilen tüm ilgili ARGE faaliyetleri özetlemekte ve geliştirilen ekipmanların performansını sunmaktadır.

___

[1] J. A. Christensen, “Boeing EDD Electric Propulsion Programs Overview,” AIAA Paper 2004-3967, July 2004.

[2] K. Chien, S. L Hart, W. G. Tighe, M. K. De Pano, T. A. Bond and R. Spears “L-3 Communications ETI Electric Propulsion Overview”, 29th International Electric Propulsion Conference, Princeton University, October 31 – November 4, 2005

[3] J.-F. Poussin and G. Berger “Eurostar E3000 threeyear flight experience and perspective”, 25th AIAA International Communications Satellite Systems Conference (organized by APSCC). 2007.

[4] J. J. Delgado, J. A. Baldwin, and R. L. Corey, “Space Systems Loral Electric Propulsion Subsystem: 10 Years of On-Orbit Operation”, 34th International Electric Propulsion Conference., 2015, Japan.

[5] Cosmo Casaregola, “Electric Propulsion for Commercial Applications: In-Flight Experience and Perspective at Eutelsat”, IEEE Transactıons On Plasma Scıence, Vol. 43, No. 1, Jan 2015.

[6] J. R. Wertz and W. J. Larson, “Space Mission Analysis and Design”, Torrance, California: Microcosm Press, 1999.

[7] R. L. Corey, N. Gascon, J. J. Delgado, G. Gaeta, S. Munir, and J. Lin, “Performance and Evolution of Stationary Plasma Thruster Electric Propulsion for Large Communications Satellites”, 28th AIAA International Communications Satellite Systems Conference, 30 August - 2 September 2010, Anaheim, California.

[8] D. Ulusen, B.C. Aydin, İ.S. Gulle , Y. Yurttaş , O. Cherkun, B. Dağ, “Electric Propulsion Activities at TÜBİTAK UZAY: Laboratory Work and Mission Plans”, International Electric Propulsion Conference, Oct 9, 2017.

[9] B.C. Aydin, D. Ulusen, I.S. Gulle, Y. Yurttas, O. Cherkun., A. Tsybulnyk, and S. Neugodnikov, “TURKSAT6A Communication Satellite Electric Propulsion Subsystem Development Status”, International Electric Propulsion Conference, Oct 9, 2017.

[10] A. I. Morozov and V. V. Savelyev, “Fundamentals of stationary plasma thruster theory”, Reviews of Plasma Physics, Vol 21.

[11] D. M. Goebel, and I. Katz, “Fundamentals of Electric Propulsion: Ion and Hall Thrusters”, (Book) John Wiley and Sons, New Jersey, 2008.

[12] D. Lev, et al., “The Technological and Commercial Expansion of Electric Propulsion in the Past 24 Years”, The 35th International Electric Propulsion Conference Georgia Institute of Technology, Atlanta, Georgia, USA October 8 – 12, 2017.

[13] Dudeck, F. Doveil, N. Arcis and S. Zurbach, “Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions”, 1st International Symposiumon Electrical Arcand Thermal Plasmas in Africa (ISAPA), IOP Conf.Series: Materials Scienceand Engineering 29 (2012) 012010.

[14] R. R. Hofer, T. M. Randolph, D. Y. Oh, J. S. Snyder, “Evaluation of a 4.5 kW Commercial Hall Thrusters System for NASA Science Missions,” AIAA-2006-4469, 42nd Joint Propulsion Conference, Sacramento, California, July 9–12, 2006.

[15] B. Welander, C. Carpenter, K. H. de Grys, R. R. Hofer, T. M. Randolph, and D. H. Manzella, “Life and Operating Range Extension of the BPT-4000 Qualification Model Hall Thruster,” AIAA-2006-5263, 42nd Joint Propulsion Conference, Sacramento, California, July 9-12, 2006.

[16] O. A. Mitrofanova1, R. Yu. Gnizdor2, V. M. Murashko3, A. I. Koryakin4, A. N. Nesterenko, “New Generation of SPT-100”, IEPC-2011-041, 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11-15, 2011.

[17] D. Valentian, N. Maslennikov, The PPS 1350 Program, IEPC-97-134.

[18] K. D. Diamant Ty Lee, R. Liang, and J. Noland, V. Vial and N. Cornu, “Performance and Plume Characterization of the PPS1350-G Hall Thruster”, AIAA Propulsion and Energy Forum, July 25-27, 2016, Salt Lake City, UT, 52nd AIAA/SAE/ASEE Joint Propulsion Conference.

[19] K.G. Xu and M.R. Walker,” High-power, null-type, inverted pendulum thrust stand”, Rev. Sci. Instrum. 80, 055103, 2009.

[20] J. E. Polk, A. Pancotti, T. Haag, S. King, M. Walker, J. Blakely, J. Ziemer, “Recommended Practice for Thrust Measurement in Electric Propulsion Testing”, Journal of Propulsion and Power, Vol. 33, No. 3, May–June 2017.

[21] Yassir Azziz, “Experimental and Theoretical Characterization of a Hall Thruster plume”, PhD Thesis, MIT, 2007.

[22] S.Mazoure, G. Largeauy L. Garrigues C. Boniface K. Dannenmayer, “Evaluation of various probe designs for measuring the ion current density in a Hall thruster plume”, 35th International Electric Propulsion Conference, Georgia Institute of Technology, Atlanta, Georgia, USA, October 8-12, 2017.

[23] D. L. Brown, M. L. R. Walker, J. Szabo W. Huang, J. E. Foster, “Recommended Practice for Use of Faraday Probes in Electric Propulsion Testing”, Journal of Propulsıon and Power Vol. 33, No. 3, May–June 2017.

[24] D. Pagano, G. Coduti, S. Scaranzin, G. Meniconi and F. Scortecci, N. Kutufa, “Performance of Plume Characterization of the SPT100-B Thruster”, 34th International Electric Propulsion Conference., 2015. Japan.

[25] I. G. Mikellides, I. J. Katz, R. R. Hofer, D. M. Goebel, “Magnetic shielding of walls from the unmagnetized ion beam in a Hall thruster”, January 2013, Applied Physics Letters 102(2) DOI: 10.1063/1.4776192.

[26] M. Serafin, "Orbital welding for space program applications", Available at: https://www.thefabricator.com/article/tubepipefabricatio n/ Access on August 17, 2019. Probes,” Journal of Applied Physics, vol. 98, no. 10, 113302,2005.

[27] D. M. Goebel, K. Jameson, I. Katz, and I. Mikellades, “Hollow Cathode Theory and Modeling: I. Plasma Characterization with Miniature Fast-Scanning Probes,” Journal of Applied Physics, vol. 98, no. 10, 113302,2005.

[28] I. Mikellades, I. Katz, D. M. Goebel, and K. K. Jameson, “Hollow Cathode Theory and Modeling: II. A Two-Dimensional Model of the Emitter Region,” Journal of Applied Physics, vol. 98, no. 10, 113303, 2005.

[29] O. Cherkun, D. Ulusen, “Cesium Hollow Cathode with Internal Discharge and Gas Feed for Electric Propulsion Applications”, 35th International Electric Propulsion Conference, Oct 9, 2017.

[30] J. M. Lafferty, “Boride Cathodes”, Journal of Applied Physics, vol. 22, p. 299, 1951.

[31] D. M. Goebel, R. M. Watkins, and K. K. Jameson, “LaB6 Hollow Cathodes for Ion and Hall Thrusters,” Journal of Propulsion and Power, vol. 23, no. 3, pp.552– 558, 2007.

[32] M. Akin, B. Akin, B.C. Aydin, S. Ontac, M. Cetin, Y. Yurttaş, “Design, Analysis and Manufacture of Composite Overwrapped Xenon Propellant Tank”, 35th International Electric Propulsion Conference, Oct 9, 2017, USA.

[33] İ.S. Gulle, B.Ç. Aydin, D. Ulusen, Y. Yurttas “Development Status of Xenon Feed Control Unit for Electric Propulsion Subsystem of TURKSAT6A Communication Satellite”, Space Propulsion Conference, May 16, 2018.

___