A Visual-Inertial Attitude Propagation for Resource-Constrained Small Satellites

An accurate and efficient attitude determination system is a key component for Earth-observation small satellites. However, most of the small satellites operate without redundant attitude sensors due to the satellite’s small form factor and are therefore at a significant risk of mission failure. In this research, we propose a visual-inertial attitude propagation approach for Earth-observation small satellites. The proposed approach integrates vision-based and inertial attitude estimation methods in an unscented Kalman filter (UKF) framework. The vision-based method propagates attitude in three degrees of freedom from sequentially captured images based on Earth-observation geometrical constraints and total shift correction method. For validation of the vision-based method’s performance, we used raw imagery data of High Definition Earth Viewing (HDEV) payload of the International Space Station (ISS). The performance of the visual-inertial approach is assessed through the realistic Earth-surface scene simulations and results are compared with ground truth data.

Kaynak Kısıtlı Küçük Uydular İçin Görsel-Ataletsel Bir Tutum Yayımı

Doğru ve verimli bir davranış belirleme sistemi Dünya’yı gözlemleyen küçük uydular için önemli bir bileşenidir. Bununla birlikte, küçük uyduların çoğu, uyduya ait küçük form faktörü nedeniyle gereksiz davranış sensörleri olmadan çalışır ve bu nedenle önemli bir görev hatası riski taşırlar. Bu araştırmada, Dünya’yı gözlemleyen küçük uydular için görsel-eylemsiz bir davranış yayılımı yaklaşımı önermekteyiz. Önerilen yaklaşım, görünmeyen bir Kalman filtresi (UKF) çerçevesinde görüntüye dayalı eylemsiz tutum tahmin yöntemlerini birleştirir. Görüntü temelli yöntem, Dünya’yı gözlemlemede geometrik kısıtlamalara ve toplam kaydırma düzeltme yöntemine dayalı olarak çekilen resimlerden üç serbestlik derecesinde davranış geliştirir. Görüntü temelli yöntemin performansının doğrulanması için, Uluslararası Uzay İstasyonunun (ISS) Yüksek Çözünürlüklü Dünya Görüntüleme (HDEV) yükünün ham görüntü verilerini kullandık. Görsel-eylemsiz yaklaşımın performansı, gerçekçi Dünya-yüzey sahne simülasyonları ile değerlendirildi ve sonuçlar, temel gerçek verilerle karşılaştırıldı.

___

[1] H. Heidt, J. Puig-Suari, A. S. Moore, S. Nakasuka, and R. J. Twiggs, “CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation”, in Proc. of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, August, 2001.

[2] C. Underwood, S. Pellegrino, V. Lappas, C. Bridges, and J. Baker, “Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST)”, Acta Astronautica, vol. 114, pp. 112-122, 2015.

[3] C. Moore, A. Caspi, T. Woods, P. Chamberlin, B. Dennis, A. Jones, J. Mason, R. Schwartz, and A. Tolbert, “The Instruments and Capabilities of the Miniature X-Ray Solar Spectrometer (MinXSS) CubeSats”, Solar Physics, vol. 293, pp. 21-61, 2018.

[4] J.R. Wertz, Spacecraft Attitude Determination and Control. Reidel: Boston, MA, USA, 1978.

[5] Z. Wu, Z. Sun, W. Zhang and Q. Chen, “Attitude and gyro bias estimation by the rotation of an inertial measurement unit”, Meas. Sci. Technol., vol. 26, pp. 1-9, 2015.

[6] M. Wei, J. Bao, F. Xing, Z. Liu, T. Sun, and Z. You, “System-on-a-Chip Based Nano Star Tracker and Its Real-Time Image Processing Approach”, in Proc. of the 30th Annual AIAA/USU Conference of Small Satellite, Logan, UT, USA, August, 2016.

[7] A. Dagvasumberel and K. Asami, “Vision-based attitude determination system for small satellites using unscented Kalman filter”, in Proc. of the 68th International Astronautical Congress, Adelaide, Australia, September, 2017.

[8] R. Shimmin, “Using a smartphone camera for nanosatellite attitude determination”, Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, Hawaii, USA, September, 2017.

[9] L. Carozza and A. Bevilacqua, “Error analysis of satellite attitude determination using a vision-based approach”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 83, pp. 19-29, 2013.

[10] T. Kouyama, A. Kanemura, S. Kato, N. Imamoglu, T. Fukuhara, and R. Nakamura, “Satellite Attitude Determination and Map Projection Based on Robust Image Matching”, Remote Sensing, vol. 9, no. 1, pp. 1-20, 2017.

[11] G. Klančar, S. Blažič, D. Matko, and G. Mušič, “Image-Based Attitude Control of a Remote Sensing Satellite”, Journal of Intell Robot Syst., vol. 66, pp. 343-357, 2012.

[12] A. Rawashdeh, W. Danhauer, and E. Lumpp, “Design of a stellar gyroscope for visual attitude propagation for small satellites”, in Proc. of IEEE Aerospace Conference, Big Sky, MT, USA, March, 2012.

[13] P. Corke, J. Lobo, and J. Dias, “An Introduction to Inertial and Visual Sensing”, The International Journal of Robotics Research, vol. 26, pp. 519-535, 2007.

[14] M. Hwangbo and T. Kanade, “Visual-inertial UAV attitude estimation using urban scene regularities”, in Proc. of 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 2451-2458, May, 2011.

[15] H. G. de Marina, F. Pereda, J.M.G. Sierra, and F. Espinosa, “UAV attitude estimation using unscented kalman filter and TRIAD”, IEEE Trans. Ind. Electron., vol. 59, pp. 4465–4474, 2012.

[16] N. D. Tan, T.Q. Vinh, and B. T. Tuyen, “A New Approach for Small Satellite Gyroscope and Star Tracker Fusion”, Indian Journal of Science and Technology, vol. 9, no. 17, pp. 1-7, 2016.

[17] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge university press: New York, USA, 2003.

[18] C. Dou, X. Zhang, H. Gou, C. Han, and M. Liu, “Improving the geolocation algorithm for sensors on-board the ISS: Effect of drift angle”, Remote Sensing, vol. 6, pp. 4647-4659, 2014.

[19] E. Malis and M. Vargas, “Deeper understanding of the homography decomposition for vision-based control”, PhD dissertation, INRIA, 2007.

[20] E. Rosten, R. Porter, and T. Drummond, “Faster and Better: A Machine Learning Approach to Corner Detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 105-119, 2010.

[21] D. Lowe, “Distinctive image features from scale-invariant keypoints”, Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.

[22] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust features (SURF)”, Comput. Vis. Image Underst., vol. 110, pp. 346–359, 2008.

[23] C. Tomasi and T. Kanade, “Shape and Motion from Image Streams: A Factorization Method—Part 3: Detection and Tracking of Point Features”, Technical Report CMU-CS-91-132, Carnegie Mellon University: Pittsburgh, PA, USA, 1991.

[24] Y. Abdel-Aziz and H. Karara, “Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry”, in Proc. of Symposium on Close-Range Photogrammetry, Urbana, IL, USA, pp. 1-18, January, 1971.

[25] M. A. Fisher and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography”, Commun. ACM, vol. 24, pp. 381–395, 1981.

[26] N. Trawny and S. Roumeliotis, “Indirect Kalman filter for 3d attitude estimation”, Technical report., University of Minnesota, Department of Computing Science and Engineering, 2005.

[27] E. J. Lefferts, F. L. Markley and M. D. Shuster, “Kalman filtering for spacecraft attitude estimation”, J. Guid. Control Dyn., vol. 5, no. 5, pp. 417-429, 1982.

[28] S. J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter to Nonlinear Systems”, in Proc. of the International Symposium Aerospace/Defense Sensing, Simulation and Controls, Orlando, FL, USA, pp. 182–193, April, 1997.

[29] E. Wan and R. van der Merwe, The Unscented Kalman Filter. In Kalman Filtering and Neural Networks. Wiley: Weinheim, Germany, 2001.

[30] J. L. Crassidis and F. L. Markley, “Unscented filtering for spacecraft attitude estimation”, J. Guid. Control Dyn., vol.26, pp. 536–542, 2003.

[31] J. Li, M. A. Post and R. Lee, “A novel adaptive unscented Kalman filter attitude estimation and control systems for 3U nanosatellite”, in Proc. of European Control Conference, Zurich, Switzerland, pp. 2128-2133, July, 2013.

[32] R. V. Garcia, H. K. Kuga, and M. C. Zanardi, “Unscented Kalman filter applied to the spacecraft attitude estimation with euler angles”, Mathematical Problems in Engineering, vol. 2012, pp. 1-12, 2012.

[33] P. Muri, S. Runco, C. Fontanot, and C. Getteau, “The High Definition Earth Viewing (HDEV) payload”, in Proc. of IEEE Aerospace Conference, Big Sky, MT, USA, pp. 1–7, March, 2017.