Nanoteknolojide Nano Gümüşün Antibakteriyel Özelliği

Nano gümüşün antibakteriyel özelliğinin önemi çok eskilere dayanmaktadır ve günümüzde farklı alanlarda geliştirilmekte olup insan yaşamı için kolaylıklar sunmaktadır. Nanoteknolojide, nano gümüş parçacıklarının antibakteriyel etkisi oldukça fazladır. Nano gümüş, sağlık, kozmetik endüstrisi gibi birçok sektörde kullanılabilir. Gümüş, toksik olmamasından dolayı metal, fayans, boya ve tekstil gibi çeşitli malzemelerin yüzeylerine kaplanabilir.Nano gümüş, çeşitli etki mekanizmaları ile bakterileri elimine edebilirler. Nano gümüşün etki mekanizması, tedavi edilmesi zor dirençli bakterilerde dahi reaktif oksidatif türlerinin (ROS) oluşumuna neden olarak, membran hasarı, solunum enzimleri gibi proteinlerin inaktivasyonu ve DNA hasarıdır. Hasar gören bu mikroorganizmalar da immün sistem hücreleri tarafından kolaylıkla ortadan kaldırılırlar. Nano gümüş, insan sağlığını tehdit eden bakteri, virüs gibi patojenik mikroorganizmalar üzerinde kolay ve kalıcı olarak etki sağlayan antibakteriyel özelliği ile dikkat çekmektedir. Bu teknoloji sağlık endüstrisinin yanı sıra, tekstil ve gıda endüstrisinde de geliştirilerek kullanılabilir. Derlememizde, bütün bunlar ve nano gümüşün etki mekanizması özetlenmiş, bu yolla,  nano gümüşün endüstrinin çeşitli alanlarında kullanılması için geliştirilmesinin önemini vurgulamak amaçlanmıştır. 

Antibacterial Properties of Nano Silver in Nanotechnology

The importance of antibacterial feature of nano silver is based on old times. Nano silver which has been being developed in distinct areas provides convenience for the lifes of humans. The antibacterial effect of nano silver particules is highly excess in nanotechnology. Nano silver can be used in many sectors such as health, cosmetics. Silver can be coated on many materials such as metals, tile, paint and textile, due to its non-toxicity. Nano silver can eliminate bacteria by many action mechanisms. Action mechanisms of nano silver are membrane damage, inactivation of proteins such as respiration enzymes and DNA damage by causing production of reactive oxygen species (ROS). This microorganisms damaged are eliminated by cells of immun system easily. Nano silver takes an attention with its irreversible effect against pathogenic microorganisms which threaten human health such as bacteria and viruses. This technology can be developed and used in textile and food industries as well as health industry. In our review, all of these and action mechanism of nano silver were summarized, by this way, emphasizing the importance of development of nano silver for its usage in various fields of industries was aimed.

___

  • Kulinowski, K., Nanotechnology: From “Wow” to “Yuck”? Bulletin of Science, Technology & Society. 24 (1), (2003), 13-20. DOI: 10.1177/0270467604263112
  • Lines, M.G., Nanomaterials for practical functional uses, Journal of Alloys and Compounds. 449 (1-2), (2008), 242-245. DOI: https://doi.org/10.1016/j.jallcom.2006.02.082
  • Rao, C.N.R., Müller, A., The Chemistry of Nanomaterials: Synthesis, Properties and Applications (1) WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim: (2005).
  • Miller, J.C., Serrato R., Represas-Cardenas J. M., Kundahl, G., “The Handbook of Nanotechnology”. John Wiley & Sons, Inc., Hoboken, New Jersy: (2004).
  • Liveri V.T., Controlled Synthesis of Nanoparticles in Microheterogeneous Systems. Springer Science+Business Media, Inc., New York: (2006).
  • Goldstain, A., Handbook of Nanophase Materials, Marcel Dekker Inc. New York: (1997).
  • Altuner, E.E., Nano Kremlerin Üretimi. Karaelmas Fen ve Mühendislik Dergisi. 4(1), (2014), 52-57.
  • Bayındır, M., Nanoteknoloji, Disiplinler Arası Yeni Bir Bilim Dalı. Kanser Tedavisinden Kozmetiğe, Yeni Enerji kaynaklarından Akıllı İlaçlara. Ütopya Yayınları. (2) İstanbul: (2009).
  • Altuner, E.E., Nano Kremlerin Üretimi. Yüksek Lisans Tezi, Selçuk Üniversitesi, (2013).
  • Huh, A.J., Kwon Y.J., “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release, 156(2), (2011), 128–145. DOI:10.1016/j.jconrel.2011.07.002
  • Chatzimitakos, T.G., Stalikas CD Qualitative Alterations of Bacterial Metabolome after Exposure to Metal Nanoparticles with Bactericidal Properties: A Comprehensive Workflow Based on (1)H NMR, UHPLC-HRMS, and Metabolic Databases. 15(9), (2016), 3322–3330. DOI: 10.1021/acs.jproteome.6b00489
  • Zhao L., Ashraf M.A., Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism, 64(5), (2015), 506-513. DOI: 10.7727/wimj.2016.179
  • Shrivastava S., Bera T., Roy A., Dash D.. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 18(22), (2007), 225103. DOI:10.1088/0957-4484/18/22/225103
  • Yang, W., Shen, C., Ji, Q., Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 20(8), (2009), 085102. DOI:10.1088/0957-4484/20/8/085102
  • Raffi, M., Hussain, F., Bhatti, T.M., Akhter, J.I., Hameed, A., Hasan, M.M., Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Material Science and Technology. 24 (2), (2008) 192-196.
  • Baek, Y.W., An, Y.J., Microbial toxicity of metal oxide nanoparticles to Escherichia coli, Bacillus subtilis, and Streptococcus aureus, Science of the Total Environment. 409 (8), (2011), 1603-1603. DOI: https://doi.org/10.1016/j.scitotenv.2011.01.014
  • Pelgrift, R.Y., Friedman, A.J., Nanotechnology as a therapeutic tool to combat microbial resistance. Advance Drug Delivery Review, 65 (15), (2013), 1803-1815.
  • Jung, W. K., Koo, H.C., Kim, K.W., Shin, S., Kim, S.H., Park, Y.H., Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Applied of Environmental Microbiology. 74(7), (2008), 2127-2128. DOI:10.1128/AEM.02001-07
  • Liau, S.Y., Read, D.C., Pugh, W.J., Furr, J.R., Russell, A.D., Interaction of Silver Nitrate with Readily Identifiable Groups: Relationship to the Antibacterial Action of Silver Ions, Letters in Applied Microbiology. 25, (1997), 279-283.
  • Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O., A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus, John Wiley and Sons. (2000), 662-668.
  • Li, W., Xie, X., Shi, Q., Zeng, H., Ou, S., Chen, Y., Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia Coli, Applied Microbial and Cell Physiology. 85, (2010), 1115-1122.
  • Holt, K., Bard, A., Interaction of Silver (I) Ions with the Respiratory Chain of Esherichia Coli: An Electrochemical and Scanning Electrochemical Microscopy Study of the Antimicrobial Mechanism of Micromolar Ag. (2005).
  • Can, C., Körlü, A. Antibakteriyel Tekstil Üretiminde Sıkça Kullanılan Gümüşün Etki Mekanizması ve Toksisitesi. Electronic Journal of Textile Technologies, 5(3), (2011), 54-59.
  • Kawashita, M., Tsuneyama, S., Miyaji, F., Kokubo, T., Kozuka, H., Yamamoto, K., Antibacterial silver-containing silica glass prepared by sol-gel method. Biomaterials. 21, (2000), 393-398.
  • Toshikazu, T. Antimicrobial agent composed of silica-gel with silver complex, Inorganic Materials. 6(283), (1999) 505-51. DOI: https://doi.org/10.11451/mukimate1994.6.505