Protein Kinaz C Aktivatörü PMA’nın TRPV1 Kanalları Üzerindeki Etkileri

TRP alt ailesinin bir üyesi olarak bilinen TRPV1 kanalları non-selektif katyon kanallarıdır. Bu kanalların en fazla bulunduğu dokular; arka kök gangliyon nöronları, vagal nöronlar ve trigeminal gangliyon nöronlarıdır. TRPV1 sıcaklık değişimi, düşük pH, kırmızı acı biberden elde edilen kapsaisin maddesi ile aktive olmaktadır. Bu kanalın sıcaklıkla aktive olması hücrede adeta termometre vazifesini gören kanal olarakta düşünülmesine sebep olmaktadır. Kapsaisin reseptörü olarak da bilinen TRPV1’in özel kapatıcısı ise kapsazepin maddesidir. Vücud aktivitelerinin devamını sağlayan en önemli unsurlardan biri; birincil haberci hormonlar ve nörotransmitter maddeler ve ikincil haberci sistemleridir. İç salgı bezlerinden salınan hormonlar hedef hücreye ulaştığında kendine özgü reseptörlere bağlanır ve ikincil haberci sistemini aktif hale getirir. Bu ikincil haberci sistemlerinin en önemlilerinden biri, PLC aktivasyonu yoluyla PKC aktivasyonudur. Ayrıca, PKC hücre içi Ca+2 miktarı arttıkça da aktive olmaktadır. Aynı zamanda, forbol esterler içinde en iyi bilinen PMA maddesi de doğrudan PKC’yi aktif hale getirmektedir. PKC ise TRPV1 kanallarının bazı özel bölgelerine bağlanarak kanalı aktif hale getirir. Hücre içi Ca+2 miktarı arttıkça oksidatif stresin de artacağı iyi bilinmektedir. TRPV1’in aktive olmasıyla daha fazla hücre içi Ca+2 miktarı artacak, artan Ca+2 miktarı ile de daha fazla PKC aktivasyonu olacaktır. Pozitif geribildirim mekanizması gibi bu süreç devam ederken, hücre içi oksidatif stres aşırı derecede fazlalaşacaktır. Eğer antioksidan sistem devreye girmez veya yetersiz kalırsa hücre apopitozise kadar devam edebilecektir. Sinir hücrelerinde, PKC aktivasyonu ile TRPV1’in açılıp hücre içerisindeki Ca+2 konsantrasyonunun fizyolojik koşulların ötesine geçmesi, fazla Ca+2 miktarına bağlı birçok hastalığın tetikçisi olabileceği düşünülmektedir. Bu hastalıkların tedavisinde PKC yoluyla TRPV1 kanalları üzerinden Ca+2 akışının durdurulmak istenmesi gayet tabiidir. Bu konuyla ilgili sınırlı sayıda çalışma bulunmasından dolayı, antioksidan maddelerin bu mekanizma üzerinden aktive olan TRPV1 kanal inhibisyonuna etkisinin araştırılması, nörolojik hastalıkların tedavisinin etiyolojisine büyük katkı sağlayacaktır.

Effects of Protein Kinase C Activator PMA on TRPV1 Channels

TRPV1 channel, which is one of TRP super families, is a non- selective cation channel. An important part of the TRPV1 channel is located in dorsal root ganglion, vagal and trigeminal neurons. TRPV1 is activated by high temperatures, low pH and capsaicin isolated from red hot chili peppers. The activation of this channel is via temperature hence it functions in the neurons like a thermometer. Also, the chemical capsazepine is a specific blocker of TRPV1. One of the most important events for the activities in the body is primary and secondary hormones and neurotransmitters messenger systems. Hormones are released by endocrine glands and they bind a specific receptor. When the hormone binds to its receptor, it leads to the release of the secondary messenger. One of the most important secondary messengers is PKC via activation of PLC. When Ca2+ ions levels are elevated in the cell, it causes the increase of the PKC levels, as well. Also, PMA agent is a phorbol ester, directly activates PKC, which in turn induces TRPV1 channels. It is well known that an increase in the amount of intracellular Ca2+ leads to an increase in oxidative stress. The activation of TRPV1 increases further the amount of intracellular Ca2+ and an increase by means of the amount of Ca2+ causes more activation of PKC. While this process continues as a positive feedback mechanism, the oxidative stress will continue to increase. If the antioxidant system is not activated or is insufficient, the cell will be directed to apoptosis. Ca2+ concentration as a result of the opening of TRPV1 via PKC activation and going beyond physiological conditions in the nerve cells can lead to a lot of diseases. In treatment of these diseases, stopping the flowing of Ca2+ via TRPV1 and activation of PKC request is self-evident. Due to the presence of a limited number of studies on this topic, investigation of the effects of antioxidant substances inhibition of TRPV1 channel activated by this mechanism will contribute to the etiology of neurological disorders’ treatment.

___

  • Guyton AC, Hall EJ. Textbook of Medical Physiology. 11th Ed. Philadelphia: Saunders, 2006.
  • Agre P, Sasaki S, Chrispeels MJ. Aquaporins: a family of water channel proteins. Am J Physiol. 1993 Sep;265(3 Pt 2):F461.
  • Cummings B. Get Ready for Biology. SanFrancisco: Pearson Education Inc. 2007.
  • Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature. 1969; 224: 285–7.
  • Minke B, Wu C, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975; 258:84 – 87.
  • Clapham DE. TRP channels as cellular sensors. Nature. 2003; 426:517-24.
  • Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012; 166:510–521.
  • Hong S, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem. 2005; 280:618–627.
  • Efendiev R, Bavencoffe A, Hu H, Zhu MX, Dessauer CW. Scaffolding by A-kinase anchoring protein enhances functional coupling between adenylyl cyclase and TRPV1 channel. J Biol Chem. 2013; 288:3929-37.
  • Wollemann M, Tóth F, Benyhe S. Protein kinase C inhibitor BIM suspended TRPV1 effect on mu-opioid receptor. Brain Res Bull. 2013; 90:114-7.
  • Numazaki M, Tominaga M. Nociception and TRP Channels. Curr Drug Targets CNS Neurol Disord. 2004;3:479–485.
  • Ristoiu V, Shibasaki K, Uchida K, Zhou Y, Ton BH, Flonta ML, Tominaga M. Hypoxia- induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha nd PKC. Pain. 2011; 152:936–45.
  • Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2- mediated inhibition. Nature 2001;411:957–62.
  • Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWt. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci U S A 2003;100:12480–85.
  • Nazıroğlu M, Özgül C. Vitamin E modulates oxidative stress and protein kinase C activator (PMA)-induced TRPM2 channel gate in dorsal root ganglion of rats. J Bioenerg Biomembr. 2013; 45:541–9.
  • Nelson DL, Cox MM. Lehninger Principle of Biochemistry 5th Ed. 2008.
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of The Cell 5th ed. 2008.
  • Putney JW Jr. A model for receptor-regulated calcium entry. Cell Calcium. 1986; 7:1–12.
  • Clapham DE, Runnels LW, Strübing C. The TRP ion channel family. Nat Rev Neurosci. 2001; 2:387-96.
  • Eraç Y, Selli Ç, Tosun M. Kalsiyumun çok yönlü işlevselliğinde TRPC iyon kanallarının rolleri. Hacettepe University Journal of Pharmacy. 2009; 28:161–83.
  • http://tr.wikipedia.org/wiki/Ester, Erişim tarihi 26.06.2014.
  • Blumberg PM. “Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture”. Cancer Res. 1988; 48:1–8.
  • Flaschenträger B, v. Wolffersdorff R. “Über den Giftstoff des Crotonöles. 1. Die Säuren des Crotonöles”. Helvetica Chimica Acta 1934;17: 1444–52.
  • Kauffmann T, Neumann H, Lenhardt K “Zur Konstitution des Phorbols, I. Über die reduzierende Gruppe des Phorbols”. Chemische Berichte. 1959; 92:1715–26.
  • Hecker E, Bartsch H, Bresch H, Gschwendt M, Härle B, Kreibich G, Kubinyi H, Schairer HU, Szczepanski Ch v, Thielmann HW. “Structure and stereochemistry of the tetracyclic diterpene phorbol from croton tiglium L”. Tetrahedron Letters. 1967; 8:3165–70.
  • Pettersen RC, Ferguson G, Crombie L, Games ML, Pointer DJ. “The structure and stereochemistry of phorbol, diterpene parent of co-carcinogens of croton oil”. Chem. Commun. (London.) 1967; (14): 716.
  • Tseng S-S, Van Duuren BL, Solomon JJ. “Synthesis of 4a.alpha.-phorbol 9-myristate 9a-acetate and related esters”. J. Org. Chem. 1977; 42: 3645–49.
  • Goel G, Makkar HP, Francis G, Becker K. Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol. 2007; 26:279–88.
  • Weinstein, I. B., L. S. Lee, P. B. Fisher, A. Mufson, and H. Yamasaki. Action of phorbol esters in cell culture: mimicry of transformation, altered differentiation, and effects on cell membranes. J. Supramol. Struct. 1979; 12:195–208.
  • Clemens, M. J., I. Trayner, and J. Menaya. The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J. Cell Sci. 1992; 103:881–87.
  • Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992; 258:607–14.
  • Mosior,M., and A. C. Newton. Mechanism of interaction of protein kinase C with phorbol esters. Reversibility and nature of membrane association. J. Biol. Chem. 1995;270:25526–33.
  • Segal, A., B. L. van Duuren, and U. Mate. The identification of phorbol myristate acetate as a new metabolite of phorbol myristate acetate in Mouse skin. Cancer Res. 1975;35:2154-59.
  • Silinsky, E. M., andT. J. Searl. Phorbol esters and neurotransmitter release; more than just protein kinase C? Br. J. Pharmacol. 2003; 138:1191–201.
  • Pettit FH, Humphreys J, Reed LJ. Regulation of pyruvate dehydrogenase kinase activity by protein thiol-disulfide exchange. Proc Natl Acad Sci U S A. 1982; 79:3945-8.
  • Hennings, H., P. M. Blumberg, G. R. Pettit, C. L. Herald, R. Shores, and S. H. Yupsa. Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters inSENCARmouse skin. Carcinogenesis 1987; 8:1343–46.
  • Lee TG, Park JB, Lee SD, Hong S, Kim JH, Kim Y, Yi KS, Bae S, Hannun YA, Obeid LM, Suh PG, Ryu SH. Phorbol myristate acetate-dependent association of protein kinase C alpha with phospholipase D1 in intact cells. Biochim Biophys Acta. 1997; 1347:199-204.
  • Amador,M. L., J. Jimeno, L. Paz-Ares, H. Cortes-Funes, and M. Hidalgo. Progress in the development and acquisition of anticancer agents from marine sources. Ann. Oncol. 2003;14:1607–15.
  • Celik O, Nazıroğlu M. Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol Behav. 2012; 107:458-65.
  • Miller BA. The role of TRP channels in oxidative stress-induced cell death. J Membr Biol. 2006; 209:31-41.
  • Voets T, Nilius B. Modulation of TRPs by PIPs. J Physiol. 2007; 582:939-44.
  • Nazıroğlu M. TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res. 2011; 36:355-66.
  • Hardie RC, Minke B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci. 1993; 16:371–76.
  • Özgül C, Nazıroğlu M. Role of TRPM2 cation channels on molecular pathways in neurological diseases J.Exp. Clin. Med 2010; 27: 144–51.
  • Naziroğlu M, Özgül C. Effects of antagonists and heat on TRPM8 channel currents in dorsal root ganglion neuron activated by nociceptive cold stress and menthol. Neurochem Res. 2012; 37:314–20.
  • Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron. 2013; 77:667–79.
  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999; 398:436–41.
  • Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A. A heat-sensitive TRP channel expressed in keratinocytes. Science. 2002; 296:2046–49.
  • Garcia-Elias A, Mrkonjić S, Jung C, Pardo-Pastor C, Vicente R, Valverde MA. The TRPV4 Channel. Handb Exp Pharmacol. 2014; 222:293–319.
  • Kambiz S, Duraku LS, Holstege JC, Hovius SE, Ruigrok TJ, Walbeehm ET. Thermo-sensitive TRP channels in peripheral nerve injury: A review of their role in cold intolerance. J Plast Reconstr Aesthet Surg. 2014; 67:591–99.
  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424:434–38.
  • Nilius B, Bíró T. TRPV3: a ‘more than skinny’ channel. Exp Dermatol. 2013; 22:447–52.
  • Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 1989; 2:1313–23.
  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997; 389:816–24.
  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998; 21:531–43.
  • Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 2001; 24:487–517.
  • Chatchaisak D, Srikiatkhachorn A, Maneesri-le Grand S, Govitrapong P, Chetsawang B. The role of calcitonin gene-related peptide on the increase in transient receptor potential vanilloid-1 levels in trigeminal ganglion and trigeminal nucleus caudalis activation of rat. J Chem Neuroanat. 2013; 47:50-6.
  • Vandewauw I, Owsianik G, Voets T. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci. 2013; 14;14:21.
  • Lundberg JM, Martling CR, Saria A. Substance P and capsaicin-induced contraction of human bronchi. Acta Physiol Scand 1983; 119:49–53.
  • Prescott ED, Julius D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science. 2003; 300:1284–8.
  • Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 2004; 279:7048–54.
  • Anand U, Otto WR, Bountra C, Chessell I, Sinisi M, Birch R, Anand P. Cytosine arabinoside affects the heat and capsaicin receptor TRPV1 localisation and sensitivity in human sensory neurons. J Neurooncol. 2008; 89:1–7.
  • Liu BY, Tsai TL, Ho CY, Lu SH, Lai CJ, Kou YR. Role of TRPA1 and TRPV1 in the ROS- dependent sensory irritation of superior laryngeal capsaicin-sensitive afferents by cigarette smoke in anesthetized rats. Pulm Pharmacol Ther. 2013; 26:364–72.
  • Szallasi A, Blumberg PM. Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 1989; 30:515–20.
  • Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G. ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 2007; 42:427–38.
  • Hsu CC, Bien MY, Huang YT, Ruan T, Kou YR, Lin YS. N-arachidonyl dopamine sensitizes rat capsaicin-sensitive lung vagal afferents via activation of TRPV1 receptors. Respir Physiol Neurobiol. 2009; 31;167:323–32.
  • Suh YG, Oh U. Activation and activators of TRPV1 and their pharmaceutical implication. Curr Pharm Des 2005;11:2687–98.
  • Dedov VN, Tran VH, Duke CC, Connor M, Christie MJ, Mandadi S, Roufogalis BD. Gingerols: a novel class of vanilloid receptor (VR1) agonists. Br J Pharmacol 2002;137:793–98.
  • Iwasaki Y, Morita A, Iwasawa T, Kobata K, Sekiwa Y, Morimitsu Y, Kubota K, Watanabe T. A nonpungent component of steamed ginger--[10]-shogaol--increases adrenaline secretion via the activation of TRPV1. Nutr Neurosci 2006; 9:169–78.
  • Morera E, De Petrocellis L, Morera L, Moriello AS, Nalli M, Di Marzo V, Ortar G. Synthesis and biological evaluation of6]-gingerol analogues as transient receptor potential channel TRPV1 and TRPA1 modulators. Bioorg Med Chem Lett. 2012; 15;22:1674–7.
  • Chung G, Im ST, Kim YH, Jung SJ, Rhyu MR, Oh SB. Activation of transient receptor potential ankyrin 1 by eugenol. Neuroscience. 2014; 261:153–60.
  • Jung J, Hwang SW, Kwak J, Lee SY, Kang CJ, Kim WB, Kim D, Oh U. Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel. J Neurosci 1999; 19:529–38.
  • Jung J, Lee SY, Hwang SW, Cho H, Shin J, Kang YS, Kim S, Oh U. Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J Biol Chem 2002; 277:44448–54.
  • Chou MZ, Mtui T, Gao YD, Kohler M, Middleton RE. Resiniferatoxin binds to the capsaicin receptor (TRPV1) near the extracellular side of the S4 transmembrane domain. Biochemistry 2004; 43:2501– 11.
  • Gavva NR, Klionsky L, Qu Y, Shi L, Tamir R, Edenson S, Zhang TJ, Viswanadhan VN, Toth A, Pearce LV, Vanderah TW, Porreca F, Blumberg PM, Lile J, Sun Y, Wild K, Louis JC, Treanor JJ. Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 2004; 279:20283–95.
  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006; 124:1269–82.
  • Rosenbaum T, Castanares DT, Lopez-Valdes HE, Hiriart M. Nerve growth factor increases L-type calcium current in pancreatic beta cells in culture. J Membr Biol 2002; 186:177–84.
  • Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 2007;445:541–45.
  • Jara-Oseguera A, Simon SA, Rosenbaum T. TRPV1: on the road to pain relief. Curr Mol Pharmacol. 2008;1:255–269.
  • Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature. 2013; 504:107–12.
  • Xu H, Blair NT, Clapham DE. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 2005; 25:8924–37.
  • Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J Bone Miner Metab 2007; 25:99–104.
  • Ugawa S, Ueda T, Ishida Y, Nishigaki M, Shibata Y, Shimada S. Amiloride-blockable acid- sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest 2002; 110:1185–90.
  • Jordt SE, Tominaga M, Julius D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci U S A 2000; 97:8134–39.
  • Welch JM, Simon SA, Reinhart PH. The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci U S A 2000; 97:13889–94.
  • Kaszas K, Keller JM, Coddou C, Mishra SK, Hoon MA, Stojilkovic S, Jacobson KA, Iadarola MJ. Small molecule positive allosteric modulation of TRPV1 activation by vanilloids and acidic pH. J Pharmacol Exp Ther. 2012; 340:152–60.
  • Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim Biophys Acta. 2012; 1820:736–42.
  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 2005; 6:150–66.
  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2006; 2:596–607.
  • Moncada S, Higgs A, Furchgott R. International Union of Pharmacology Nomenclature in Nitric Oxide Research. Pharmacol Rev 1997; 49:137–42.
  • Ren JY, Song JX, Lu MY, Chen H. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. Regul Pept. 2011; 169:49-57.
  • Vlachova V, Teisinger J, Susankova K, Lyfenko A, Ettrich R, Vyklicky L. Functional role of C terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 2003; 23:1340–50.
  • Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 2006; 26:4835–40.
  • Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T. Gating of TRP channels: a voltage connection? J Physiol 2005; 567:35–44.
  • Riera CE, Vogel H, Simon SA, le Coutre J. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol
  • Ahern GP, Brooks IM, Miyares RL, Wang XB. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci 2005; 25:5109–16.
  • Wallace HM. Targeting polyamine metabolism: a viable therapeutic/preventative solution for cancer? Expert Opin Pharmacother 2007; 8:2109–16.
  • Li J, Doyle KM, Tatlisumak T. Polyamines in the brain: distribution, biological interactions, and their potential therapeutic role in brain ischaemia. Curr Med Chem 2007; 14:1807–13.
  • Medina MA, Correa-Fiz F, Rodriguez-Caso C, Sanchez-Jimenez F. A comprehensive view of polyamine and histamine metabolism to the light of new technologies. J Cell Mol Med 2005;9:854–64.
  • Ahern GP, Wang X, Miyares RL. Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 2006; 281:8991–95.
  • Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 2006;444:208–12.
  • Kitaguchi T, Swartz KJ. An inhibitor of TRPV1 channels isolated from funnel Web spider venom. Biochemistry 2005; 44:15544–9.
  • Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49:481–93.
  • Halliwell B, Gutteridge JM. Lipid peroxidation in brain homogenates: the role of iron and hydroxyl radicals. J Neurochem. 1997; 69:1330–1.
  • Akyol O, Herken H, Uz E, Fadillioğlu E, Unal S, Söğüt S, Ozyurt H, Savaş HA. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients. The possible role of oxidant/antioxidant imbalance. Prog Neuropsychopharmacol Biol Psychiatry. 2002; 26:995–1005.
  • Cohen TS, Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med. 2012; 18:509–19.
  • Nazıroğlu M, Ciğ B, Özgül C. Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: role of TRPV1 channels. Neuroscience. 2013; 242:151-160.
  • Jancso N. Pharmacological analysis of the function and receptor structure of the pain- sensitive nerve endings. Acta Physiol Hung 1957; 11:11–14.
  • PORSZASZ J, JANCSO N. Studies on the action potentials of sensory nerves in animals desensitized with capsaicine. Acta Physiol Acad Sci Hung. 1959; 16:299–306.
  • Jancso-Gabor A, Szolcsanyi J, Jancso N. Stimulation and desensitization of the hypothalamic heat sensitive structures by capsaicin in rats. J Physiol 1970; 208:449–59.
  • Jancso N, Jancso-Gabor A, Takats I. Pain and inflammation induced by nicotine, acetylcholine and structurally related compounds and their prevention by desensitizing agents. Acta Physiol Acad Sci Hung 1961; 19:113–32.
  • Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 1999; 51:159–212.
  • Schwarz S, Greffrath W, Busselberg D, Treede RD. Inactivation and tachyphylaxis of heat-evoked inward currents in nociceptive primary sensory neurones of rats. J Physiol
  • Liu L, Simon SA. Capsaicin-induced currents with distinct desensitization and Ca2+ dependence in rat trigeminal ganglion cells. J Neurophysiol 1996; 75:1503–1514.
  • Liu L, Simon SA. The influence of removing extracellular Ca2+ in the desensitization responses to capsaicin, zingerone and olvanil in rat trigeminal ganglion neurons. Brain Res 1998; 809:246–52.
  • Koplas PA, Rosenberg RL, Oxford GS. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 1997; 17:3525–37.
  • Czikora Á, Rutkai I, Pásztor ET, Szalai A, Pórszász R, Boczán J, Édes I, Papp Z, Tóth A. Different desensitization patterns for sensory and vascular TRPV1 populations in the rat: expression, localization and functional consequences. PLoS One. 2013; 8(11):e78184.
  • Tominaga M, Wada M, Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U S A 2001; 98:6951–56.
  • Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C, Noguchi K, Tominaga M. Possible involvement of P2Y2 metabotropic receptors in ATPinduced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 2003;23:6058–62.
  • Zhang N, Inan S, Cowan A, Sun R, Wang JM, Rogers TJ, Caterina M, Oppenheim JJ. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc Natl Acad Sci U S A 2005;102:4536–41.
  • Zhang X, Huang J, McNaughton PA. NGF rapidly increases membrane expression of TRPV1 heatgated ion channels. Embo J. 2005;24:4211–23.
  • Liu B, Zhang C, Qin F. Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 2005;25:4835–43.
  • Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T. Dual regulation of TRPV1 by phosphoinositides. J Neurosci 2007;27:7070–80.
  • Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 2006;128:509–22.
  • Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez- Nilo F, Latorre R. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci U S A 2007;104:10246–51.
  • Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A 2000;97:6155–60.
  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 1999;400:452–57.
  • González-Aparicio R, Moratalla R. Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson´s disease. Neurobiol Dis. 2014;62:416–25.
  • Matta JA, Miyares RL, Ahern GP. TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J Physiol 2007;578:397–411.
  • Rukwied R, Chizh BA, Lorenz U, Obreja O, Margarit S, Schley M, Schmelz M. Potentiation of nociceptive responses to low pH injections in humans by prostaglandin E2. J Pain 2007;8:443–51.
  • Moriyama T, Higashi T, Togashi K, Iida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 2005;1:3.
  • Premkumar LS, Ahern GP. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000;408:985–990.
  • Ohta T, Ikemi Y, Murakami M, Imagawa T, Otsuguro K, Ito S. Potentiation of transient receptor potential V1 functions by the activation of metabotropic 5-HT receptors in rat primary sensory neurons. J Physiol 2006;576:809–22.
  • Sugiuar T, Bielefeldt K, Gebhart GF. TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. J Neurosci 2004;24:9521–30.
  • Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci 2007;27:2331–7.
  • Kim BM, Lee SH, Shim WS, Oh U. Histamine-induced Ca(2+) influx via the PLA(2)/ lipoxygenase/ TRPV1 pathway in rat sensory neurons. Neurosci Lett 2004;361:159–162.
  • Studer M, McNaughton PA. Modulation of single-channel properties of TRPV1 by phosphorylation. J Physiol. 2010;588:3743–56.
  • Grace M, Birrell MA, Dubuis E, Maher SA, Belvisi MG. Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin. Thorax. 2012;67:891–900.
  • Shin J, Cho H, Hwang SW, Jung J, Shin CY, Lee SY, Kim SH, Lee MG, Choi YH, Kim J, Haber NA, Reichling DB, Khasar S, Levine JD, Oh U. Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci U S A 2002;99:10150–5.
  • Cesare P, Moriondo A, Vellani V, McNaughton PA. Ion channels gated by heat. Proc Natl Acad Sci U S A 1999;96:7658–63.
  • Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWt. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 2002;35:721–731.
  • Mohapatra DP, Nau C. Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 2003;278:50080–90.
  • Mohapatra DP, Wang SY, Wang GK, Nau C. A tyrosine residue in TM6 of the Vanilloid Receptor TRPV1 involved in desensitization and calcium permeability of capsaicin-activated currents. Mol Cell Neurosci 2003;23:314–24.
  • Jeske NA, Diogenes A, Ruparel NB, Fehrenbacher JC, Henry M, Akopian AN, Hargreaves KM. A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1. Pain. 2008;138:604–16.
  • Vetter I, Wyse BD, Monteith GR, Roberts-Thomson SJ, Cabot PJ. The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol Pain 2006;2:22.
  • Mandadi S, Numazaki M, Tominaga M, Bhat MB, Armati PJ, Roufogalis BD. Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium 2004;35:471–78.
  • Goswami C. TRPV1-tubulin complex: involvement of membrane tubulin in the regulation of chemotherapy-induced peripheral neuropathy. J Neurochem. 2012;123:1–13.
  • Goswami C, Dreger M, Otto H, Schwappach B, Hucho F. Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 2006;96:254–66.
  • Goswami C, Hucho T. TRPV1 expression-dependent initiation and regulation of filopodia. J Neurochem. 2007;103:1319–33.
  • Goswami C, Hucho TB, Hucho F. Identification and characterisation of novel tubulin- binding motifs located within the C-terminus of TRPV1. J Neurochem 2007;101:250–62.
  • Goswami C, Schmidt H, Hucho F. TRPV1 at nerve endings regulates growth cone morphology and movement through cytoskeleton reorganization. Febs J 2007;274:760–72.
  • Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, Kuner R. Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron. 2013;77:43-57.
  • www.sigmaaldrich.com/ Erişim tarihi: 21.06.2013