Endokrin Bozucu Kimyasal Maddeler ve Tiroid Üzerine Etkileri: Poliklorlu Bifeniller, Ftalat ve Bisfenol A

Günümüzde başta gelişmiş ülkelerde olmak üzere endokrin bozucu kimyasal maddelere maruziyet oldukça yüksektir. Özellikle son 50 yılda artan tiroid hastalıkları prevalansı ile poliklorlu bifeniller, ftalatlar ve bisfenol A’ya yüksek miktarlarda temas arasında bir ilişkinin olabileceği düşünülmektedir. Bu kimyasal maddelere maruziyet sonucunda tiroid yapısında, tiroid hormonlarında ve tiroid ile ilgili genlerde bazı değişiklikler meydana gelebileceği tanımsal ve mekanistik çalışmalar ile hem in vivo, hem de in vitro olarak incelenmiştir. İnsan verileri sınırlı olmakla birlikte, yapılan çalışmaların sonuçları bu maddelerin insanda da tiroid hormon analoğu gibi davranabileceğini veya tiroid reseptörlerine bağlanarak tiroid hormon sinyal yolaklarını bozabileceğini göstermektedir. Bu derlemenin amacı, endokrin bozucu kimyasal maddelerin tiroid üzerindeki olası etkilerini ve bu konuda yapılan hayvan ve insan çalışmalarını değerlendirmektir.

The Effects Of Endocrine Disrupting Chemicals On Thyroid: Polychlorinated Biphenyls, Phthalate And Bisphenol A

Today, exposure to endocrine disrupting chemicals is abundantly high, particularly in developed countries. The observations indicate a high correlation between the increasing prevalence of thyroid diseases and exposure to high concentrations of polychlorinated biphenyls, phthalates and bisphenol A in the last 50 years. Exposure to those chemicals were found to alter thyroid structure, thyroid hormones and thyroid-related genes in in vivo and in vitro descriptive and mechanistic studies. Though human data are limited, the results of the conducted studies suggest that these substances act like thyroid analogues or bind to thyroid receptors and disrupt thyroid hormone signaling pathways. The aim of this review is to evaluate the possible effects of endocrine disrupting chemicals on thyroid and to discuss the results of animal and human studies.

___

  • Braverman, L.E., Ingbar, S.H.,Sterling, K. Conversion of thyroxine (t4) to triiodothyronine (t3) in athyreotic human subjects. Journal of Clinical Investigation, 49(5), 855 (1970).
  • Ko, J. The selenoenzyme family of deiodinase isozymes controls local thyroid hormone availability. Reviews in Endocrine and Metabolic Disorders, 1(1-2), 49-58 (2000).
  • Oppenheimer, J., Schwartz, H., Mariash, C., Kinlaw, W., Wong, N.,Freake, H. Advances in our understanding of thyroid hormone action at the cellular level. Endocrine Reviews, 8(3), 288-308 (1987).
  • Falcone, M., Miyamoto, T., Fierro-Renoy, F., Macchia, E.,DeGroot, L. Antipeptide polyclonal antibodies specifically recognize each human thyroid hormone recep tor isoform. Endocrinology, 131(5), 2419-2429 (1992).
  • Hodin, R.A., Lazar, M.A.,Chin, W.W. Differential and tissue-specific regulation of the multiple rat c-erba messenger rna specie s by thyroid hormone. Journal of Clinical Investigation, 85(1), 101 (1990).
  • Strait, K.A., Schwartz, H.L., Perez-Castillo, A.,Oppenheimer, J.H. Relationship of c-erba m rna content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. Journal of Biological Chemistry, 265(18), 10514-10521 (1990).
  • Yen, P.M. Physiological and molecular basis of thyroid hormone action. Physiological reviews, 81(3), 1097-1142 (2001).
  • Oppenheimer, J.H., Schwartz, H.L.,Strait, K.A. An integrated view of thyroid hormone actions in vivo. Molecular Endocrin ology: Basic Concepts and Clinical Correlations, 249- 268 (1995).
  • Park, M.-A., Hwang, K.-A.,Choi, K.-C. Diverse animal models to examine potential role (s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property?. Laboratory animal research, 27(4), 265-273 (2011).
  • Bredhult, C., Bäcklin, B.-M.,Olovsson, M. Effects of some endocrine disruptors on the proliferation and viabili ty of human endometrial endothelial cells in vitro. Reproductive Toxicology, 23(4), 550-559 (2007).
  • Ndhlala, A.R., Ncu be, B.,Van Staden, J. Ensuring quality in herbal medicines: Toxic phthalates in plastic-packaged commercial herbal products. South African Journal of Botany, 82, 60-66, doi:http://dx.doi.o rg/10.1016/j.sajb.2012.07.004 (2012).
  • Shanle, E.K.,Xu, W. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action. Chemical research in toxicology, 24(1), 6-19 (2010).
  • Takamiya, M., Lambard, S.,Huhtaniemi, I.T. Effect of bisphe nol a on human chorionic gonadotrophin-stimulated gene expression of cultured mouse leydig tumour cells. Reproductive Toxicology, 24(2), 265-275 (2007).
  • Jugan, M.-L., Levi, Y.,Blondeau, J.-P. Endocrine disruptors and thyroid hormone physiology. Biochemical pharmacology, 79(7), 939-947 (2010).
  • Bernal, J. Thyroid hormone receptors in brain development and function. Nature Clinical Practice Endocrinology & Metabolism, 3(3), 249-259 (2007).
  • Brucker-Dav is, F. Effects of environmental synthetic chemicals on thyroid function. Thyroid, 8(9), 827-856 (1998).
  • DeVito, M., Biegel, L., Brouwer, A., Brown, S., Brucker-Davis, F., Cheek, A.O., et.el. Screening methods for thyroid hormone disruptors. Environmental Health Perspectives, 107(5), 407 (1999).
  • Colborn, T. Neurodevelopment and endocrine disruption. Environmental Health Perspectives, 112, 944 ( 2004).
  • McKinney, J.D., Waller, C.L. Polychlorinated biphenyls as hormonally active structural analogues. Environmental Health Perspectives, 1 02(3), 290 (1994).
  • McKinney, J.D., Waller, C.L. Molecular determinants of hormone mimicry: Halogenated aromatic hydrocarbon environmental agents. J ournal of Toxicology and Environmental Health, Part B Critical Reviews, 1(1), 27-58 (1998).
  • Zoeller, R.T. Environme ntal chemicals as thyroid hormone analogues: New studies indicate that thyroid hormone receptors are targets of industrial chemicals?. Molecular and cellular endocrinology, 242(1), 10-15 (2005).
  • 2. Hopf, N.B., Ruder, A.M.,Succop, P. Background levels of polychlorinated biphenyls in the us population. Scie nce of the total environment, 407(24), 6109-6119 (2009).
  • Robertson, L.W.,Ludewig, G. Polychlorinated biphenyl (pcb) carcinogenicity with special emphasis on airborne pcbs. Gefahrstoffe, Reinhaltung der Luft= Air quality control/ Herausgeber, BIA und KRdL im VDI und DIN, 71(1-2), 25 (2011).
  • Boyle, P., Levin, B. World cancer report IARC Nonserial Publication. WHO Press: Gen eva. 2008.
  • Beyer, A.,Biziuk, M. Environmental fate and global distribution of polychlorinated biphenyls. Reviews of Environmental Contamination and Toxicology, 201, 137-158 (2009).
  • Boas, M., Feldt-Rasmussen, U., Sk akkebæk, N.E.,Main, K.M. Environmental chemicals and thyroid function. European Journal of Endocrinology, 154(5), 599-611 (2006).
  • van der Plas, S.A., Lutkeschipholt, I., Spenkelink, B.,Brouwer, A. Effects of subchronic exposure to complex mixtures of dioxin-like and non-dioxin-like polyhalogenated aromatic compounds on thyroid hormone and vitamin a levels in female sprague-dawley rats. Toxicological Sciences, 59(1), 92-100 (2001).
  • Hallgren, S., Sinjari, T., Håkansson, H.,Darnerud, P. Effects of polybrominated diphenyl ethers (pbdes) and polychlorinated biphenyls (pcbs) on thyroid hormone and vitamin a levels in rats and mice. Archives of toxicology, 75(4), 200-2 08 (2001).
  • Hallgren, S.,Darnerud, P.O. Polybrominated diphenyl ethers (pbdes), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats—testing inte ractions and mechanisms for thyroid hormone effects. Toxicology, 177(2), 227-243 (2002).
  • Kiliç, N., Sandal, S., Çolakoglu, N., Kutlu, S., Seyran, A.,Yilmaz, B. Endocrine disruptive effects of polychlorinated biphenyls on the thyroid gland in female rats. The Tohoku journal of experimental medicine, 206(4 ), 327-332 (2005).
  • Meerts, I.A., Assink, Y., Cenijn, P.H., Van Den Berg, J.H., Weijers, B.M., Bergman, Å., Koeman, J.H.,Brouwer, A. Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone hom eostasis in the rat. Toxicological Sciences, 68(2), 361-371 (2002).
  • Darnerud, P., Morse, D., Klasson-Wehler, E.,Brouwer, A. Binding of a 3, 3, 4, 4-tetrachlorobiphenyl (cb-77) metabolite to fetal transthyretin and effects on fetal thyroid ho rmone levels in mice. Toxicology, 106(1), 105-114 (1996).
  • Goldey, E.S., Kehn, L.S., Lau, C., Rehnberg, G.L.,Crofton, K.M. Developmental exposure to polychlorinated biphenyls (aroclor 1254) reduces circulating thyroid hormone concentratio ns and causes hearing deficits in rats. Toxicology and applied pharmacology, 135(1), 77-88 (1995).
  • Debier, C., Ylitalo, G.M., Weise, M., Gulland, F., Costa, D.P., Le Boeuf, B.J., de Tillesse, T.,Larondelle, Y. Pcbs and ddt in the serum of juvenile california sea lions: Associations with vitamins a and e and thyroid hormones. Environmental Pollution, 134(2), 323-332 (2005).
  • Skaare, J.U., Bernhoft, A., Wiig, Ø., Norum, K.R., Haug, E., Eide, D.M.,Derocher, A.E. Relationships between plasma levels of organochlorines, retinol and thyroid hormones from polar bears (ursus maritimus) at svalbard. Journal of Toxicology and Environmental Health Part A, 62(4), 227-241 (2001).
  • 6. Chiba, I., Sakakibara, A., Goto, Y., Isono, T., Yamamoto, Y., Iwata, H., et. al. Negative correlation between plasma thyroid hormone levels and chlorinated hydrocarbon levels accumulated in seals from the coast of hokkaido, japan. Environmental toxicology and chemistry, 20(5), 1092-1097 (2001).
  • 7. Sİrmo, E.G., Jussi, I., Jussi, M., Braathen, M., Skaare, J.U.,Jenssen, B.M. Thyroid hormone status in gray seal (halichoerus grypus) pups from the baltic sea and the atlantic ocean in relation to organochlorine pollutants. Environmental toxicology and chemistry
  • Kobayashi, M., Kashida, Y., Yoneda, K., Iwata, H., Watanabe, M., Tanabe, S., et. al. Thyroid lesions and dioxin accumulation in the livers of jungle crows (corvus macrorhynchos) in urban and suburban tokyo. Archives of environmental contamination and toxicology, 48(3), 424-432 (2005).
  • Saita, E., Hayama, S., Kajigaya, H., Yoneda, K., Watanabe, G.,Taya, K. Histologic changes in thyroid glands from great cormorant (phalacrocorax carbo) in tokyo bay, japan: Possible association with environmental contaminants. Journal of wildlife diseases, 40(4), 763-768 (2004).
  • Takser, L., Mergler, D., Baldwin, M., De Grosbois, S., Smargiassi, A.,Lafond, J. Thyroid hormones in pregnancy in relation to environmental exposure to organochlorine compounds and mercury. Environmental Health Perspectives, 113(8), 1039-1045 (2005).
  • Schell, L.M., Gallo, M.V., Denham, M., Ravenscroft, J., DeCaprio, A.P.,Carpenter, D.O. Relationship of thyroid hormone levels to levels of polychlorinated biphenyls, lead, p,p’- dde, and other toxicants in akwesasne mohawk youth. Environmental Health Perspect, 116(6), 806-813 (2008).
  • Turyk, M.E., Anderson, H.A., Freels, S., Chatterton Jr, R., Needham, L.L., Patterson Jr, D.G., et. al. Associations of organochlorines with endogenous hormones in male great lakes fish consumers and nonconsumers. Environmental research, 102(3), 299-307 (2006).
  • Dallaire, R., Muckle, G., Dewailly, É., Jacobson, S.W., Jacobson, J.L., Sandanger, T.M., et. al. Thyroid hormone levels of pregnant inuit women and their infants exposed to environmental contaminants. Environ Health Perspect, 117(6), 1014-1020 (2009).
  • Bloom, M.S., Vena, J.E., Olson, J.R.,Kostyniak, P.J. Assessment of polychlorinated biphenyl congeners, thyroid stimulating hormone, and free thyroxine among new york state anglers. International journal of hygiene and environmental health, 212(6), 599-611 (2009).
  • Langer, P., Kočan, A., Tajtáková, M., Koška, J., Rádiková, Ž., Kšinantová, L., et. al. Increased thyroid volume, prevalence of thyroid antibodies and impaired fasting glucose in young adults from organochlorine cocktail polluted area: Outcome of transgenerational transmission?. Chemosphere, 73(7), 1145-1150 (2008).
  • Darnerud , P., Lignell, S., Glynn, A., Aune, M., Törnkvist, A.,Stridsberg, M. Pop levels in breast milk and maternal serum and thyroid hormone levels in mother–child pairs from uppsala, sweden. Environment international, 36(2), 180-187 (2010).
  • Koopman-Es seboom, C., Morse, D.C., Weisglas-Kuperus, N., Lutkeschipholt, I.J., Van Der Paauw, C.G., Tuinstra, L.G., et. al. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatric research, 36(4), 468-473 (1994).
  • Ribas-Fitó , N., Sala, M., Cardo, E., Mazón, C., De Muga, M., Verdş, A., et. al. Organochlorine compounds and concentrations of thyroid stimulating hormone in newborns. Occupational and environmental medicine, 60(4), 301-303 (2003).
  • Wilhelm, M., Wittsiepe, J., Lemm, F., Ranft, U., Krämer, U., Fürst, P., et. al. The duisburg birth cohort study: Influence of the prenatal exposure to pcdd/fs and dioxin-like pcbs on thyroid hormone status in newborns and neurodevelopment of infants until the age of 24 months. Mutation Research/Reviews in Mutation Research, 65(1)9, 83-92 (2008).
  • Dallaire, R., D ewailly, E., Ayotte, P., Muckle, G., Laliberté, C.,Bruneau, S. Effects of prenatal exposure to organochlorines on thyroid hormone status in newborns from two remote coastal regions in quebec, canada. Environmental research, 108(3), 387-392 (2008).
  • Herbstman, J.B., Sjodin, A., Apelberg, B.J., Witter, F.R., Halden, R.U., Patterson, D.G., et. al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (pcb) and polybrominated diphenyl ether (pbde) and neonatal thyroid hormone levels. Environ Health Perspect, 116(10), 1376-1382, (2008).
  • Chevrier, J., Es kenazi, B., Bradman, A., Fenster, L.,Barr, D.B. Associations between prenatal exposure to polychlorinated biphenyls and neonatal thyroid-stimulating hormone levels in a mexican-american population, salinas valley, california. Environmental health perspectives, 115(10), 1490-1496 (2007).
  • Matsuura, N., Uc hiyama, T., Tada, H., Nakamura, Y., Kondo, N., Morita, M.,et. al. Effects of dioxins and polychlorinated biphenyls (pcbs) on thyroid function in infants born in japan– the second report from research on environmental health. Chemosphere, 45(8), 1167-1171 (2001).
  • Su, P.-H., Chen, J.-Y., Chen, J.-W.,Wang, S.-L. Growth and thyroid function in children with in utero exposure to dioxin: A 5-year follow-up study. Pediatric research, 67(2), 205- 210 (2010).
  • Alvarez-Pedrerol, M., Ribas-Fito, N., Torrent, M., Carrizo, D., Grimalt, J.O.,Sunyer, J. Effects of pcbs, p, p-ddt, p, p-dde, hcb and-hch on thyroid function in preschool children. Occupational and environmental medicine, 65(7), 452-457 (2008).
  • Osius, N., Karmaus, W., Kruse, H.,Witten, J. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children. Environmental health perspectives, 107(10), 843 (1999).
  • Schell, L.M., Gallo, M.V., DeCaprio, A.P., Hubicki, L., Denham, M.,Ravenscroft, J. Thyroid function in relation to burden of pcbs, p, p-dde, hcb, mirex and lead among akwesasne mohawk youth: A preliminary study. Environmental toxicology and pharmacology, 18(2), 91-99 (2004).
  • Hagmar, L., Rylander, L., Dyremark, E., Klasson-Wehler, E.,Erfurth, E.M. Plasma concentrations of persistent organochlorines in relation to thyrotropin and thyroid hormone levels in women. International archives of occupational and environmental health, 74(3), 184-188 (2001).
  • Persky, V., Turyk, M. , Anderson, H.A., Hanrahan, L.P., Falk, C., Steenport, D.N., et. al. The effects of pcb exposure and fish consumption on endogenous hormones. Environmental health perspectives, 109(12), 1275 (2001).
  • Bloom, M.S., Weiner, J.M., Vena, J.E.,Beehler, G.P. Exploring associations between serum levels of select organochlorines and thyroxine in a sample of new york state sportsmen:: The new york state angler cohort study. Environmental research, 93(1), 52-66 (2003).
  • Langer, P., Tajtáková , M., Petrík, J., Chovancová, J., Drobná, B., Jursa, S., et. al. Possible effects of polychlorinated biphenyls and organochlorinated pesticides on the thyroid after long-term exposure to heavy environmental pollution. Journal of occupational and environmental medicine, 45(5), 526-532 (2003).
  • Darras, V. Endocrine disru pting polyhalogenated organic pollutants interfere with thyroid hormone signalling in the developing brain. The Cerebellum, 7(1), 26-37 (2008).
  • Heudorf, U., Mersch-Sunder mann, V.,Angerer, J. Phthalates: Toxicology and exposure. International journal of hygiene and environmental health, 210(5), 623-634 (2007).
  • Breous, E., Wenzel, A.,Loo s, U. The promoter of the human sodium/iodide symporter responds to certain phthalate plasticisers. Molecular and cellular endocrinology, 244(1), 75-78 (2005).
  • Shimada, N.,Yamauchi, K. C haracteristics of 3, 5, 3-triiodothyronine (t3)-uptake system of tadpole red blood cells: Effect of endocrine-disrupting chemicals on cellular t3 response. Journal of endocrinology, 183(3), 627-637 (2004).
  • Ishihara, A., Nishiyama, N. , Sugiyama, S.-i.,Yamauchi, K. The effect of endocrine disrupting chemicals on thyroid hormone binding to japanese quail transthyretin and thyroid hormone receptor. General and comparative endocrinology, 134(1), 36-43 (2003).
  • Sugiyama, S.-i., Shimada, N ., Miyoshi, H.,Yamauchi, K. Detection of thyroid system– disrupting chemicals using in vitro and in vivo screening assays in xenopus laevis. Toxicological sciences, 88(2), 367-374 (2005).
  • O’Connor, J.C., Frame, S.R., Ladics, G.S. Evaluation of a 15-day screening assay using intact male rats for identifying antiandrogens. Toxicological sciences, 69(1), 92-108 (2002).
  • Howarth, J.A., Price, S.C., Dobrota, M., Kentish, P.A.,Hinton, R.H. Effects on male rats of di-(2-ethylhexyl) phthalate and di-n-hexylphthalate administered alone or in combination. Toxicology letters, 121(1), 35-43 (2001).
  • Poon, R., Lecavalier, P., Mu eller, R., Valli, V., Procter, B.,Chu, I. Subchronic oral toxicity of di-n-octyl phthalate and di (2-ethylhexyl) phthalate in the rat. Food and Chemical Toxicology, 35(2), 225-239 (1997).
  • Erkekoglu, P., Giray, B.K., Kizilgun, M., Hininger-Favier, I., Rachidi, W., Roussel, A.-M., et. al. Thyroidal effects of di-(2-ethylhexyl) phthalate in rats of different selenium status. Journal of Environmental Pathology, Toxicology and Oncology, 31(2), 143-153 (2012).
  • Zhai, W., Huang, Z., Chen, L ., Feng, C., Li, B.,Li, T. Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl) phthalate (mehp). PloS one, DOI: 10.1371/journal.pone.0092465 (2014).
  • Huang, P.-C., Kuo, P.-L., Gu o, Y.-L., Liao, P.-C.,Lee, C.-C. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women. Human reproduction, 22(10), 2715-2722 (2007).
  • Meeker, J.D., Calafat, A.M., Hauser, R. Di (2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environmental health perspectives, 115(7), 1029 (2007).
  • Boas, M., Frederiksen, H., F eldt-Rasmussen, U., Skakkebæk, N.E., Hegedus, L., Hilsted, L., et. al. Childhood exposure to phthalates: Associations with thyroid function, insulin-like growth factor i, and growth. Environ Health Perspect, 118(10), 1458-1464 (2010).
  • Durmaz, E., Özmert, E.N., Erk ekoğlu, P., Giray, B., Derman, O., Hıncal, F., et. al. Plasma phthalate levels in pubertal gynecomastia. Pediatrics, 125(1), 122-129 (2010).
  • Janjua, N.R., Mortensen, G.K., A ndersson, A.-M., Kongshoj, B., Skakkebæk, N.E.,Wulf, H.C. Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans. Environmental science & technology, 41(15), 5564-5570 (2007).
  • Calafat, A.M., Ye, X., Wong, L.-Y ., Reidy, J.A.,Needham, L.L. Exposure of the us population to bisphenol a and 4-tertiary-octylphenol: 2003-2004. Environmental health perspectives
  • Ye, X., Pierik, F.H., Hauser, R., Duty, S., Angerer, J., Park, M.M., et. al. Urinary metabolite concentrations of organophosphorous pesticides, bisphenol a, and phthalates among pregnant women in rotterdam, the netherlands: The generation r study. Environmental research, 108(2), 260-267 (2008).
  • Nieminen, P., Lindström-Seppä, P. , Juntunen, M., Asikainen, J., Mustonen, A.-M., Karonen, S.-L., et. al. In vivo effects of bisphenol a on the polecat (mustela putorius). Journal of Toxicology and Environmental Health Part A, 65(13), 933-945 (2002).
  • Nieminen, P., Lindström-Seppä, P., Mustonen, A.-M., Mussalo-Rauhamaa, H.,Kukkonen, J.V. Bisphenol a affects endocrine physiology and biotransformation enzyme activities of the field vole (microtus agrestis). General and comparative endocrinology, 126(2), 183-189 (2002).
  • Xu, X., Liu, Y., Sadamatsu, M., Tsuts umi, S., Akaike, M., Ushijima, et. al. Perinatal bisphenol a affects the behavior and src-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neuroscience research, 58(2), 149-155 (2007).
  • Schmutzler, C., Bacinski, A., Gotthar dt, I., Huhne, K., Ambrugger, P., Klammer, H., et. al. The ultraviolet filter benzophenone 2 interferes with the thyroid hormone axis in rats and is a potent in vitro inhibitor of human recombinant thyroid peroxidase. Endocrinology, 148(6), 2835-2844 (2007).
  • Iwamuro, S., Sakakibara, M., Terao, M ., Ozawa, A., Kurobe, C., Shigeura, T., et. al. Teratogenic and anti-metamorphic effects of bisphenol a on embryonic and larval xenopus laevis. General and comparative endocrinology, 133(2), 189-198 (2003).
  • Kudo, Y.,Yamauchi, K. In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in xenopus laevis. Toxicological Sciences, 84(1), 29-37 (2005).
  • Freitas, J., Cano, P., Craig-Veit, C. , Goodson, M.L., David Furlow, J.,Murk, A.J. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicology in Vitro, 25(1), 257-266 (2011).
  • Moriyama, K., Tagami, T., Akamizu, T. , Usui, T., Saijo, M., Kanamoto, N., et. al. Thyroid hormone action is disrupted by bisphenol a as an antagonist. The Journal of Clinical Endocrinology & Metabolism, 87(11), 5185-5190 (2002).
  • Sun, H., Shen, O.-X., Wang, X.-R., Zh ou, L., Zhen, S.-q.,Chen, X.-d. Anti-thyroid hormone activity of bisphenol a, tetrabromobisphenol a and tetrachlorobisphenol a in an improved reporter gene assay. Toxicology in Vitro, 23(5), 950-954 (2009).
  • Hofmann, P.J., Schomburg, L.,Köhrle, J. Interference of endocrine disrupters with thyroid hormone receptor-dependent transactivation. Toxicological sciences, 110, 125–137 (2009).
  • Jagnytsch, O., Opitz, R., Lutz, I.,Kloa s, W. Effects of tetrabromobisphenol a on larval development and thyroid hormone-regulated biomarkers of the amphibian xenopus laevis. Environmental research, 101(3), 340-348 (2006).
  • Kitamura, S., Kato, T., Iida, M., Jinno , N., Suzuki, T., Ohta, S., et. al. Anti-thyroid hormonal activity of tetrabromobisphenol a, a flame retardant, and related compounds: Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life sciences, 76(14), 1589-1601 (2005).
  • Popa, D.-S., Bolfa, P., Kiss, B., Vlase , L., Păltinean, R., Pop, A., et. al. Influence of genista tinctoria l or methylparaben on subchronic toxicity of bisphenol a in rats. Biomedical and Environmental Sciences, 27(2), 85-96 (2014).
  • Barry Delclos, K., Camacho, L., Lewis, S .M., Vanlandingham, M.M., Latendresse, J.R., Olson, G.R., et. Al. Toxicity evaluation of bisphenol a administered by gavage to sprague- dawley rats from gestation day 6 through postnatal day 90. Toxicological Sciences, 139(1), 174–197. (2014).
  • Meeker, J.D., Calafat, A.M.,Hauser, R. Ur inary bisphenol a concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environmental science & technology, 44(4), 1458-1463 (2009).
  • Meeker, J.D.,Ferguson, K.K. Relationship between urinary phthalate and bisphenol a concentrations and serum thyroid measures in us adults and adolescents from the national health and nutrition examination survey (nhanes) 2007–2008. Environmental health perspectives, 119(10), 1396 (2011).
  • Jurewicz, J.,Hanke, W. Exposure to phthala tes: Reproductive outcome and children health. A review of epidemiological studies. International journal of occupational medicine and environmental health, 24(2), 115-141 (2011).
  • Zoeller, R.T., Bansal, R.,Parris, C. Bisph enol-a, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters rc3/ neurogranin expression in the developing rat brain. Endocrinology, 146(2), 607-612 (2005).
  • Seiwa, C., Nakahara, J., Komiyama, T., Kat su, Y., Iguchi, T.,Asou, H. Bisphenol a exerts thyroid-hormone-like effects on mouse oligodendrocyte precursor cells. Neuroendocrinology, 80(1), 21-30 (2004).
  • Chevrier, J., Gunier, R.B., Bradman, A., H olland, N.T., Calafat, A.M., Eskenazi, et. al. Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the chamacos study. Environmental health perspectives, 121(1), 138-144 (2013).