Kanser Tedavisinde Lenfatik Hedeflendirme

Kanser; kontrolsüz bölünen ve diğer dokulara yayılabilme özelliği olan anormal hücrelerin oluşturduğu hastalıklar için kullanılan bir terimdir. Kanser tedavisinde radyoterapi, ameliyat ve kemoterapi gibi yöntemler kullanılır. Kemoterapi; kanser hastalarında önemli yan etkilere neden olur. Bu nedenle; tümörlü dokuya özgü ilaç taşıyıcı sistemlere ihtiyaç duyulur. İlacın sağlıklı dokularda daha az birikmesinin ve tümörlü bölgede tercihen yoğunlaşmasının bir sonucu olarak ilaç toksisitesi azalır. Bu sistemlere örnek olarak; lipozomlar, miseller, mikro-nanopartiküler sistemler verilebilir. Kanser hücreleri vücudun diğer organlarına kan ve lenf yoluyla yayılırlar. İlacın lenfatik sisteme hedeflendirilmesinin bir sonucu olarak kanser hücrelerinin çevre dokulara yayılması önlenebilir. Bu derlemede öncelikle; kanser hakkında temel bilgiler verilmekte; daha sonra ise; bu konuda yapılmış güncel çalışmalar ve araştırmalar ışığında kanser tedavisinde ilacın hedeflendirilmesinin önemi ve lenfatik hedeflendirmeden nasıl yararlanılabileceği anlatılmaktadır.

Lymphatic targeting in Cancer Therapy

Cancer is a term used for diseases of uncontrollable self-division of abnormal cells, which are able to invade other tissues. Radiotherapy, surgery and chemotherapy applications are in cancer treatment. Chemotherapy can cause many side effects in cancer patients. Therefore, tumor tissue-specific drug carrier systems are needed. Drug toxicity is reduced as a consequence of preferential accummulation at target sites and lower concentration in healthy tissues. Examples of these systems are liposomes, micelles, micro-nanoparticulate systems. Cancer cells can spread to other parts of the body through the blood and lymphatic systems. Spread of cancer cells into surrounding tissues can be prevented by drug targeting to the lymphatic system. In this context, basic information about cancer is given then, in the view of current studies, importance of targeting and advantages of lymphatic targeting in cancer therapy are explained.

___

  • http://whqlibdoc.who.int/publications/2009/9789283204237_tur_p1-104.pdf
  • http://www.kanser.gov.tr/folders/file/8iL-2006-SON.pdf
  • Kutluk T., Kars A. (Editörler) , Kanser Konusunda Genel Bilgiler, Ankara, Türk Kanser Araştırma ve Savaş Kurumu Yayınları, (1994), sayfa 26 .
  • www.cancervic.org.au/downloads/other_languages/turkish/Cancer_WhatIs.pdf
  • http://www.cancer.gov/cancertopics/understandingcancer/cancergenomics/page49
  • Vogelstein B., Kinzler K.W.: Cancer genes and the pathways they control, Nat Med, 10, 789 (2004).
  • http://tr.wikipedia.org/wiki/P53
  • http://www.cancer.gov/cancertopics/factsheet/Sites-Types/metastatic
  • Hart, I. R., “Metastasis”, Souhami R. L., Tannock, I., Hohenberger, P., Horiot, J.C. (Eds), Oxford Textbook of Oncology Second Edition, New York, Oxford University Press, (2002), cilt I, sayfa 103.
  • http://en.wikipedia.org/wiki/Radiation_therapy
  • Greish, K.: Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines, J Drug Target, 15, 457 (2007).
  • Leaf, C.: Why we are losing the war on cancer (and how to win it) , Fortune, 149, 84 (2004).
  • Jain, R. K.: Molecular regulation of vessel maturation, Nat Med, 9, 685 (2003).
  • Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., Jain, R. K., McDonald, D. M.: Openings between defective endothelial cells explain tumor vessel leakiness, Am J Pathol , 156, 1363 (2000).
  • Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P., Jain, R. K.: Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size, Cancer Res , 55, 3752 (1995).
  • Wu, J., Akaike, T., Maeda, H.: Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase ınhibitor, and a nitric oxide scavenger, Cancer Res, 58 (1998).
  • Kopecek, J., Kopeckova, P., Minko, T., Lu, Z.R., Peterson, C.M.: Water soluble polymers in tumor targeted delivery, J Control Release, 74, 147 (2001).
  • Alberto, A., Gabizon, M. D. : Pegylated liposomal doxorubicin: Metamorphosis of an old drug into a new form of chemotherapy, Cancer Invest , 19, 424 (2001).
  • Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res, 46, 6387 (1986).
  • Fukumura, D., Jain, R. K.: Tumor microvasculature and microenvironment: Targets for antiangiogenesis and normalization, Microvasc Res, 74, 72 (2007).
  • Harris, A. L.: Hypoxia - a key regulatory factor in tumour growth, Nat Rev Cancer, 2, 38 (2002).
  • Tatum, J. L. et al.: Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy, Int J Radiat Biol, 82, 699 (2006).
  • Lammers, T., Hennink, W.E., Storm, G.: Tumour targeted nanomedicines: Principles and practice, Brit J Cancer, 99, 392 (2008).
  • Kaş, H. S., Eldem, T., “Kontrollü Salım Sistemlerinin Hedeflendirilmesi”, Gürsoy, A. (Editör), Kontrollü Salım Sistemleri, İstanbul, Kontrollü Salım Sistemleri Derneği Yayı- nı, (2002), sayfa 308.
  • Gürsoy, R. N., Siahann, T. J.: Binding and internalization of ICAM – 1 peptide by the surface receptors of T cells, J Pep Res, 53, 414 (1999).
  • Ghose, T., The Current Status of Tumor Targeting: A Rewiev, Page, M. (Editör), Tumor Targeting in Cancer Therapy, New Jersey, Humana Press, (2002), sayfa 5.
  • Malam, Y., Loizido, M., Seifalian, A. M.: Liposomes and nanoparticles: nanosized ve- hicles for drug delivery in cancer, Trends Pharmacol Sci, 30, 592 (2009).
  • Nielsen, U. B., Marks, J. D.: Internalizing antibodies and targeted cancer therapy: di- rect selection from phage display libraries, Pharm Sci Technol Today, 3, 282 (2000).
  • Bernold, D.M., Sinicrope, F.A.: Kolorektal kanser kemoterapisinde gelişmeler,Clinical Gastroenterology and Hepatology, Turkish edition, 1, 126 (2006).
  • Aina, O. H., Sroka, T. C., Chen, M. L., Lam, K. S.: Therapeutic cancer targeting pep- tides, Biopolymers , 66, 184 (2002).
  • Shadidi, M., Sioud, M.: Selective targeting of cancer cells using synthetic peptides, Drug Resist Update, 6, 363 (2003).
  • Enback, J., Laakkonen, P.: Tumour-homing peptides: tools for targeting, imaging and destruction, Biochem Soc T, 35, 780 (2007).
  • Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N., Ruoslahti, E.: Nanocrys- tal targeting in vivo, P Natl Acad Sci, 99, 12617 (2002).
  • Karmali, P. P., Kotamraju, V. R., Kastantin, M., Black, M., Missirlis, D., Tirrell, M., Ruoslahti, E.: Targeting of albumin-embedded paclitaxel nanoparticles to tumors, Nanomedicine: NBM, 5, 73 (2009).
  • New R.R.C., (Editör), Liposomes: a practical approach, New York, Oxford University Press, (1990).
  • Zelphati, O., Szoka, F.C.: Liposomes as a carrier for intracellular delivery of antisense oligonucleotides: a real or magic bullet?, J Control Release, 41, 99 (1996).
  • Park, J.W., Kirpotin, D.B., Hong, K., Shalaby, R., Shao, Y., Nielsen, U.B.: Tumor target- ing using anti-her2 immunoliposomes, J Control Release, 74, 95 (2001).
  • Park, J.W., Hong, K., Kirpotin, D.B., Colbern, G., Shalaby, R., Baselga, J., Shao, Y., Nielsen, U.B., Marks, J.D., Moore, D., Papahadjopoulos, D., Benz C.C.: Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery, Clin Cancer Res, 8, 1172 (2002).
  • Xiong, X.B., Mahmud, A., Uludag, H., Lavasanifar, A.: Multifunctional polymeric mi- celles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells, Pharm Res, 25, 2555 (2008).
  • Goren, D., A. Horowitz, T., Tzemach, D., Tarshish, M., Zalipsky, S., Gabizon, A.: Nu- clear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug- resistance efflux pump, Clin Cancer Res, 6, 1949 (2000).
  • Weitman, S. D., Weinberg, A. G., Coney, L. R., Zurawski, V. R., Jennings, D. S., Kamen, B. A.: Cellular-localization of the folate receptor potential role in drug toxicity and fo- late homeostasis, Cancer Res, 52, 6708 (1992).
  • Ross, J. F., Chaudhuri, P. K., Ratnam, M.: Differential regulation of folate receptor isoforms in normal and malignant tissues in-vivo and in established cell-lines physi- ological and clinical implications, Cancer, 732432 (1994).
  • Yoo, H. S., Park, T. G.: Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin PEGfolate conjugate, J Control Release, 100, 247 (2004).
  • Haley, B., Frenkel, E.: Nanoparticles for drug delivery in cancer treatment, Urol Oncol, 26, 57 (2008).
  • Gradishar, W. J., Tjulandin, S., Davidson, N., Shaw, H., Desai, N., Bhar, P., Hawkins, M., O’shaughnessy, J.: Phase III trial of nanoparticle albumin-bound paclitaxel com- pared with polyethylated castor oil– based paclitaxel in women with breast cancer, J Clin Oncol, 23, 7794 2005.
  • Nishioka, Y., Yoshino, H.: Lymphatic targeting with nanoparticulate System, Adv Drug Deliver Rev, 47, 55 (2001).
  • Rusznyak, I., Foldi, M., Szabo, G., Lymphatics and Lymph Circulation; Physiology and Pathology, New York, Pergamon Press, (1960).
  • Guyton A, Hall J. E., Textbook of medical physiology. 9th ed., Philadelphia, W.B. Saun- ders Company, (1996).
  • Leak, L.V.: The structure of lymphatic capillaries in lymph formation, Fed Proc, 35, 1863 (1976).
  • Trevaskis, N. L., Charman, W. N., Porter, C.J.H.: Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update, Adv Drug Deliver Rev, 60, 702 (2008).
  • Panteleo, G., Graziosi, C., Demarest, J.F., Cohen, O.J., Vaccerezza, M., Gantt, K. , Muro-cacho, C., Fauci, A.S.: Role of lymphoid organs in the pathogenesis of human immunodefiecency virus infection, Immunol Rev, 140, 105 (1994).
  • Lalanne, M., Paci, A., Andraiux, K., Clayette, P., Re, M., Vassal, G.: Synthesis and biological evaluation of two glycerolipidic prodrugs of didanosine for direct lymphatic delivery against HIV, Bioorg Med Chem Lett, 17, 2237 (2007).
  • Kinman, L., Bui, T., Larsen, K., Tsai. C.C., Anderson, D., Morton, W.R., Hu, S.L., Ho, R.J.: Optimization of lipid–indinavir complexes for localization in lymphoid tissues of HIV-infected macaques, Journal of Acq Immun Def Synd, 42, 155 (2006).
  • Alexa, M. R. A., Chackoa, A. J., Josea, S., Soutob, E. B.: Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting, Eur J Pharm Sci, 42, 11 (2011).
  • Kaur, C. D., Nahar, M., Jain, N. K.: Lymphatic targeting of zidovudine using surface- engineered liposomes, J Drug Target, 16, 798 (2008).
  • Takahashi, T.: Emulsion and activated carbon in cancer chemotherapy, CRC Crit Rev Ther Drug Carrier Syst, 2, 245 (1985).
  • Alitalo, K., Carmeliet, P.: Molecular mechanisms of lymphangiogenesis in health and disease, Cancer Cell, 1, 219 (2002).
  • Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E.C., Wise, L., Mercer, A., Kowalski, H., Kerjaschki. D., Stacker, S.A., Achen, M.G., Alitalo, K.: Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3, EMBO J, 20, 4762 (2001).
  • Kaipainen, A., Korhonen, J., Mustonen, T., Van Hinsbergh, V.W., Fang, G.H., Dumont, D., Breitman, M., Alitalo, K. : Expression of the fms-like tyrosine kinase 4 gene be- comes restricted to lymphatic endothelium during development, Proc Natl Acad Sci, 92, 3566 (1995).
  • Achen, M.G., Mann, G.B, Stacker, S.A.: Targeting lymphangiogenesis to prevent tu- mour metastasis, Brit J Cancer, 94, 1355 (2006).
  • Skobe, M., Detmar, M.: Structure, function, and molecular control of the skin lym- phatic system, J Investig Dermatol Symp Proc, 5, 14 (2000).
  • Achen, M.G., Roufail, S., Domagala, T., Catimel, B., Nice, E.C., Geleick, D.M., Murphy, R., Scott, A.M., Caesar, C., Makinen, T., Alitalo, K., Stacker, S.A.: Monoclonal anti- bodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3, Eur J Biochem, 267, 2505 (2000).
  • Karpanen, T., Egeblad, M., Karkkainen, M.J., Kubo, H., Yla-Herttuala, S., Jaattela, M., Alitalo, K.: Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth, Cancer Res, 61, 1786 (2001).
  • He, Y., Rajantie, I., Pajusola, K., Jeltsch, M., Holopainen, T., Yla-Herttuala, S., Harding, T., Jooss, K., Takahashi, T., Alitalo, K.: Vascular endothelial cell growth factor recep- tor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels, Cancer Res, 65, 4739 (2005).
  • Bielenberg, D.R., Pettaway, C.A., Takashima, S., Klagsbrun, M.: Neuropilins in neo- plasms: expression, regulation, and function, Exp Cell Res, 312, 584 (2006).
  • Shimizu, K., Kubo, H., Yamaguchi, K., Kawashima, K., Ueda, Y., Matsuo, K., Awane, M., Shimahara, Y., Takabayashi, A., Yamaoka, Y., Satoh, S.: Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer, Cancer Sci, 95, 328 (2004).
  • Hoshida, T., Isaka, N., Hagendoorn, J., di Tomaso, E., Chen, Y.L., Pytowski, B., Fuku- mura, D., Padera, T.P., Jain, R.K.: Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications, Cancer Res, 66, 8065 (2006).
  • Roberts, N., Kloos, B., Cassella, M., Podgrabinska, S., Persaud, K., Wu, Y., Pytowski, B., Skobe, M.: Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2, Cancer Res, 66, 2650 (2006).
  • Kubo, H., Fujiwara, T., Jussila, L., Hashi, H., Ogawa, M., Shimizu, K., Awane, M., Sakai, Y., Takabayashi, A., Alitalo, K., Yamaoka, Y., Nishikawa, S.I.: Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis, Blood, 96, 546 (2000).
  • Kadambi, A., Mouta Carreira, C., Yun, C.O., Padera, T.P., Dolmans, D.E., Carmeliet, P., Fukumura, D., Jain, R.K.: Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A, Cancer Res, 61, 2404 (2001).
  • Arora, A. Scholar, E. M.: Role of tyrosine kinase inhibitors in cancer therapy, J Phar- macol Exp Ther, 315, 971 (2005).
  • Yamamoto, Y., Tsutsumi, Y., Mayumi, T.: Molecular design of bioconjugated cell adhe- sion peptides with a water-soluble polymeric modifier for enhancement of antimeta- static effect, Curr Drug Targets, 3, 123 (2002).
  • Adessi, C., Soto, C.: Converting a peptide into a drug: strategies to improve stability and bioavailability, Curr Med Chem, 9, 963 (2002).
  • Muranishi, S., Fujita, T., Murakami, M., Yamamato, A.: Potential for lymphating target- ing of peptides, J Control Release, 46, 157 (1997).
  • Laakkonen P., Porkka, K., Hoffman, J. A., Ruoslahti E.: A tumor-homing peptide with a targeting specificity related to lymphatic vessels, Nat Med, 8, 751 (2002).
  • Ruoslahti E.: Drug targeting to specific vascular sites, Drug Discov Today, 7, 1138 (2002).
  • Laakkonen, P., Zhang, A.L., Ruoslahti, E.: Peptide targeting of tumor lymph vessels, Ann NY Acad Sci, 1131,37 (2008).
  • Luo, G., Yu, X., Jin, C., Yang, F., Fu, D., Long, J., Xu, J., Zhan, C., Lu, W.: LyP-1-con- jugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors, Int J Pharm, 385, 150 (2010).
  • http://www.aapsj.org/abstracts/AM_2010/W5282.pdf
  • Li, X., Jin, Q., Chen, T., Zhang, B., Zheng, R., Wang, Z., Zheng H.: LyP-1 ultrasonic microbubbles targeting to cancer cell as tumor bioacoustics markers or drug carriers: targeting efficiency evaluation in microfluidic channels, Conf Proc IEEE Eng Med Biol Soc, 463 (2009).
  • Laakkonen, P., Akerman, M. E., Biliran, H., Yang, M., Ferrer, F., Karpanen, T., Hoff- man, R. M., Ruoslahti, E., Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells, Proc Natl Acad Sci, 101, 9381 (2004).
  • Yang, F., Fu D. L., Long, J., Ni X., Q.: Magnetic lymphatic targeting drug delivery sys- tem using carbon nanotubes, Medical Hypotheses, 70, 765, (2008).
  • Widder K.J., Marino P.A., Morris R.M., Senyei A.E., “Magnetically Modulated Nanosys- tems: A Unique Drug-Delivery Platform: Characterization of Magnetic-targeted Carri- ers”, Targeted Drugs., Goldberg E (Ed), New York, John Wiley and Sons, (1983).
  • Lubbe, A. S., Alexiou, C., Bergemann, C.: Clinical application of magnetic drug target- ing, J Surg Res, 95, 200 (2001).
  • Oussoren, C., Storm, G.: Liposomes to target the lymphatics by subcutaneous admin- istration, Adv Drug Deliver Rev, 50, 143 (2001).
  • Liu, J., Meisner, D., Kwong, E., Wu, X.Y., Johnston, M.R.: A novel trans-lymphatic drug delivery system: Implantable gelatin sponge impregnated with PLGA–paclitaxel micro- spheres, Biomaterials, 28, 3236 (2007).
  • Hashida, M., Egawa, M., Muranishi, S., Sezaki, H.: Role of intra-muscular administra- tion of water-in-oil emulsions as a method for increasing the delivery of anticancer agents to regional lymphatics, J Pharmacokin Biopharm, 5, 223 (1997).
  • Kaminskasa, L.M., Kotaa, J., McLeoda, V.M., Kellyb B.D, Karellasb, P., Portera, C.J.H.: PEGylation of polylysine dendrimers improves absorption and lymphatic targeting fol- lowing sc administration in rats, J Control Release, 140, 108 (2009).
  • Ehrlich P.: On immunity with specific reference to cell life, Proc R Soc London, 66, 429 (1900).