İnsan Genomik DNA ile Simvastatinin etkileşmesinin incelenmesi

Bir hipolipidemik ilaç olan simvastatinin insan genomik DNA ile etkileşmesi dönüşümlü voltametri CV , differansiyel puls voltametrisi DPV ve UV/Vis spektroskopisi yöntemleri kullanılarak incelenmiştir. Simvastatinin insan genomik DNA ile etkileşmesi sonucunda simvastatinin pik akımında önemli bir azalmayla birlikte maksimum absorpsiyon bandlarında hipokromik ve batokromik etki gözlenmiştir. Simvastatinin elektrokimyasal ve spektral özelliklerindeki değişiklikler DNA ile interkalasyon bir şekilde etkileştiğini belirtmektedir. Voltametrik ve spektroskopik veriler kullanılarak bağlanma sabitleri tayin edilmiştir. Ayrıca etkileşme üzerine iyonik şiddetinin etkisi simvastatinin DNA çift sarmalına interkalasyonunu desteklemektedir. Bu çalışmalar ilacın tedavi edici etkisinin belirlenmesi açısından önemli olan simvastatin – DNA etkileşiminin daha iyi anlaşılması ve ilerde yeni DNA hedefli ilaçların tasarlanması açısından değerlidir.

Investigation of Interaction of Simvastatin with Human Genomic DNA

The interaction of simvastatin SIM , a hipolipidemic drug, with human genomic DNA has been investigated by cyclic voltammetry CV , differential pulse voltammetry DPV and UV/Vis spectroscopy. As a result of the interaction of SIM with human genomic DNA, a considerable decrease in the SIM peak currents and a hypochromic and bathochromic shift in the maximum adsorption bands of SIM was observed. The changes in the electrochemical and spectral characteristics of SIM indicated SIM bind to DNA by intercalative mode. Binding constants were determined using voltammetric and spectroscopic data. In addition that the effect of ionic strength on the interaction support the intercalation of SIM into the DNA double helix. These studies are valuable for a better understanding SIM – DNA interaction, which should be important into the determination of therapeutic efficacy of the drug and design of new DNA targeted drug in future.

___

  • Todd, P. A., Goa, K. L.: Simvastatin - a Review of Its Pharmacological Properties and Therapeutic Potential in Hypercholesterolemia, Drugs, 40, 583-607 (1990).
  • Sobal, G., Sinzinger, H.: Effect of simvastatin on the oxidation of native and modified lipoproteins, Biochem Pharmacol, 70, 1185-1191 (2005).
  • Pedersen, T. R., Tobert, J. A.: Benefits and risks of HMG-CoA reductase inhibitors in the prevention of coronary heart disease - A reappraisal, Drug Safety, 14, 11-24 (1996).
  • Gotto, A. M.: Review of primary and secondary prevention trials with lovastatin, pravas- tatin, and simvastatin, American Journal of Cardiology, 96, 34f-38f (2005).
  • Lambert, B., Lepecq, J. B.: ‘’DNA-Ligand Interactions, From Drugs to Proteins’’, New York (1986).
  • Porschke, D.: ‘’DNA-Ligand Interactions, Specifity and Dynamics of Protein-Nucleic Acid Interactions’’, New York (1986).
  • Singh, M. P., Joseph, T., Kumar, S., Bathini, Y., Lown, J. W.: Synthesis and Sequence- Specific DNA-Binding of a Topoisomerase Inhibitory Analog of Hoechst-33258 Designed for Altered Base and Sequence Recognition, Chem Res Toxicol, 5, 597-607 (1992).
  • Pasternack, R. F., Gibbs, E. J., Villafranca, J. J.: Interactions of Porphyrins with Nucle- ic-Acids, Biochemistry-Us, 22, 2406-2414 (1983).
  • Palecek, E., Kolar, V., Jelen, F., Heinemann, U.: Electrochemical Analysis of the Self- Complementary B-DNA Decamer D(Ccaggcctgg), Bioelectroch Bioener, 23, 285-299 (1990).
  • Chu, X., Shen, G. L., Jiang, J. H., Kang, T. F., Xiong, B., Yu, R. Q.: Voltammetric stud- ies of the interaction of daunomycin anticancer drug with DNA and analytical applica- tions, Anal Chim Acta, 373, 29-38 (1998).
  • Feng, Q., Li, N. Q., Jiang, Y. Y.: Electrochemical studies of porphyrin interacting with DNA and determination of DNA, Anal Chim Acta, 344, 97-104 (1997).
  • Marrazza, G., Chianella, I., Mascini, M.: Disposable DNA electrochemical sensor for hybridization detection, Biosens Bioelectron, 14, 43-51 (1999).
  • Marrazza, G., Chiti, G., Mascini, M., Anichini, M.: Detection of human apolipoprotein E genotypes by DNA electrochemical biosensor coupled with PCR, Clin Chem, 46, 31-37 (2000).
  • Miller, S. A., Dykes, D. D., Polesky, H. F.: A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells, Nucleic Acıds Res, 16, 1215-1215 (1988).
  • Reichmann, M.E., Rice, S.A., Thomas, C.A., Doty, P.: A Further Examination of the Mo- lecular Weight and Size of Desoxypentose Nucleic Acid, J Am Chem Soc,76, 3047–3053 (1954).
  • Laviron, E., Roullier, L., Degrand, C.: A Multilayer Model for the Study of Space Distrib- uted Redox Modified Electrodes .2. Theory and Application of Linear Potential Sweep Voltammetry for a Simple Reaction, J Electroanal Chem, 112, 11-23 (1980).
  • Wang, S. F., Peng, T. Z., Yang, C. F.: Electrochemical determination of interaction pa- rameters for DNA and mitoxantrone in an irreversible redox process, Biophys Chem, 104, 239-248 (2003).
  • Carter, M. T., Rodriguez, M., Bard, A. J.: Voltammetric Studies of the Interaction of Metal-Chelates with DNA .2. Tris-Chelated Complexes of Cobalt(Iii) and Iron(Ii) with 1,10-Phenanthroline and 2,2’-Bipyridine, J Am Chem Soc, 111, 8901-8911 (1989).
  • Komorsky-Lovric, S., Nigovic, B.: Electrochemical characterization of simvastatin by abrasive stripping and square-wave voltammetry, J Electroanal Chem, 593, 125–130 (2006).
  • Bard, J., Faulkner, L. R.: ‘’Electrochemical methods Fundamentals and Applications’’, Wiley: New York (1980).
  • Laviron, E.: Adsorption, Autoinhibition and Autocatalysis in Polarography and in Lin- ear Potential Sweep Voltammetry, J Electroanal Chem, 52, 355-393 (1974).
  • Laviron, E.: General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems, J Electroanal Chem, 101, 19-28 (1979).
  • Anson, F. C.: Evidence for Adsorption of Cobalt(3)-)Ethylenedinitrilo)Tetraacetate at Platinum Electrodes, Anal Chem, 36, 520-& (1964).
  • Wu, L.L., Zhou, J.Z., Luo, J., Lin, Z.H.: Oxidation and adsorption of deoxyribonucleic acid at highly ordered pyrolytic graphite electrode, Electrochim Acta, 45, 2923-2927 (2000).
  • Kalanur, S. S., Katrahalli, U., Seetharamappa, J.: Electrochemical studies and spec- troscopic investigations on the interaction of an anticancer drug with DNA and their analytical applications, J Electroanal Chem, 636, 93-100 (2009).
  • Gao, X. X., Yao, X. R.: ‘’Polarographic Catalytic Wave of the Element of Group’’, Pt. Sci- ence Press: Beijing, China (1977).
  • Carter, M. T., Bard, A. J.: Voltammetric Studies of the Interaction of Tris(1,10-Phenan- throline)Cobalt(Iii) with DNA, J Am Chem Soc, 109, 7528-7530 (1987).
  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmacueticals for Human Use, Validation of Analytical Procedures: ICH Harmon- ised Tripartite Guideline (2005).
  • Record, M. T., Anderson, C. F., Lohman, T. M.: Thermodynamic Analysis of Ion Effects on Binding and Conformational Equilibria of Proteins and Nucleic-Acids - Roles of Ion Association or Release, Screening, and Ion Effects on Water Activity, Q Rev Biophys, 11, 103-178 (1978).
  • Fukuda, R., Takenaka, S., Takagi, M.: Metal-Ion Assisted DNA-Intercalation of Crown Ether-Linked Acridine-Derivatives. Journal of the Chemical Society-Chemical Com- munications, 1028-1030 (1990).
  • Takenaka, S., Ihara, T., Takagi, M.: Bis-9-Acridinyl Derivative Containing a Viologen Linker Chain - Electrochemically Active Intercalator for Reversible Labeling of DNA, Journal of the Chemical Society-Chemical Communications, 1485-1487 (1990).
  • Dang, X. J., Nie, M. Y., Tong, J., Li, H. L.: Inclusion of 10-methylphenothiazine and its electrochemically generated cation radical by beta-cyclodextrin in water plus methanol solvent mixtures, J Electroanal Chem, 437, 53-59 (1997).
  • Dang, X. J., Nie, M. Y., Tong, J., Li, H. L.: Inclusion of the parent molecules of some drugs with beta-cyclodextrin studied by electrochemical and spectrometric methods, J Electroanal Chem, 448, 61-67 (1998).